Series 9800 Desktop Computers

HP 9825
Operating and Programming
Reference

(D Javstreit

(ﬁp HEWLETT

PACKARD

Warranty Statement

Hewlett-Packard products are warranted against defects in
materials and workmanship. For Hewlett-Packard Desktop
Computer Division products sold in the U.S.A. and Canada, this
warranty applies for ninety (90) days from date of delivery.”
Hewlett-Packard will, at its option, repair or replace equipment
which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any.
Equipment returned to Hewlett-Packard for repair must be
shipped freight prepaid. Repairs necessitated by misuse of the
equipment, or by hardware, software, or interfacing not provided
by Hewlett-Packard are not covered by this warranty.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR
CONSEQUENTIAL DAMAGES.

*For other countries, contact your local Sales and Service Office
to determine warranty terms.

FEDERAL COMMUNICATIONS COMMISSION
RADIO FREQUENCY INTERFERENCE
STATEMENT

The Federal Communications Commission (in Subpart J of Part 15, Docket 20780) has specified that the following
notice be brought to the attention of the users of this product.

Warning: This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in
accordance with the instructions manual, may cause interference to radio communications. It has been tested and found
to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are
designed to provide reasonable protection against such interference when operated in a commercial environment.
Operation of this equipment in a residential area is likely to cause interference in which case the user at his own expense
will be required to take whatever measures may be required to correct the interference.

HP 9825 Desktop Computer
Operating and Programming Reference

Manual Part No. 09825-90200
Microfiche No. 09825-99200

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525
(For World-wide Sales and Service Offices see back of manual.)
Copyright by Hewlett-Packard Company 1980

\\

Printing History

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional
pages to be merged into the manual by the user. Each updated page will be indicated by a
revision date at the bottom of the page. A vertical bar in the margin indicates the changes on
each page. Note that pages which are rearranged due to changes on a previous page are not
considered revised.

The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections and updates which are incorpo-
rated at reprint do not cause the date to change.) The manual part number changes when
extensive technical changes are incorporated.

May 1980...First Edition.

June 1980...Updated pages: D-5, D-6, Disc Programming insert.

November 1980...Second Edition. Revised pages: v, 1-8, 1-10, B-1 thru B-23, C-1 thru C-10,
D-9, D-10.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not
furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of
this document may be photocopied, reproduced or translated to another program language without the prior written
consent of Hewlett-Packard Company.

rev:

11/80

iii

Your Operating and Programming Reference

This reference describes installing, operating and programming an HP 9825A or 98258 De-
sktop Computer. The 9825B contains all features of its predecessor, the 9825A. In addition,
the 98258 has many optional language modules (ROMs) built-in and can be configured with
up to 62 Kbytes of read/write memory.

This reference replaces these earlier 9825A manuals:

e 9825A Operating and Programming (09825-90000)
e String Variables Programming (09825-90020)
e Advanced Programming (09825-90021)

e Systems Programming (09825-90027)

Although the information is the same, it's arranged here for easy access and allows us to
provide better documentation updating in the future. You'll find a complete index to topics in
both this reference and the /O Contro! Reference at the back of each binder.

This reference also provides room for the optional language ROM manuals currently useable
with the 9825A and 9825B:

e Matrix Programming (09825-90022)

o Disk Programming (09885-90000 or 09825-90220).

Since the 9825A and 9825B are often referred to as calculators, computers and desktop
computers, these terms are used interchangably throughout this reference.

We welcome your comments and suggestions for improving HP user documentation. You'll
find a card at the back of this reference. If it's missing, address your comments to:

Hewlett-Packard Company

3404 E. Harmony Road

Fort Collins, CO 80525

ATTN: PL97 User Documentation

Reference Preview
Chapter 1: Installation

Covers installing your new desktop computer and describes accessories and services
available for your computer.

Chapter 2: Keyboard Operations

Introduces you to the keyboard functions including editing keys, math operations, spe-
cial function keys and system command keys. If you are not familiar with the 9825, please
read this chapter before starting to program.

Chapter 3: HPL Programming

Describes the standard 9825 High-speed Programming Language (HPL). Each state-
ment and function is presented, along with typical example program lines. You'll also find
a brief introduction to programming in HPL.

Chapter 4: Advanced Programming

Explains the advanced programming language: for-next loops, subprograms with
parameter passing, split and integer data storage and program cross-referencing. Each
statement and function is covered, accompanied by many example program sequences.

Chapter 5: Tape Cartridge Operations

Shows how to use the built-in tape drive for program and data storage. The statements
and commands covered here can also be used to control external 9875A Tape Drives.

Chapter 6: String Variables

Describes the statements and functions available for handling alphanumeric data, using
either simple string variables or string arrays.

Chapter 7: Systems Programming

Covers the language extensions available with the large memory (9825T), including
remote keyboard operation, terminal emulation, and program self-modification.

You'll find reference tables, a complete list of HPL syntax, all error codes and an index at the
back of the reference. For a table of contents to each chapter, look under the appropriate
tabbed divider.

9825B User Documentation

The standard set of 9825B manuals is listed here. The first three manuals can be ordered as
the 98258 Manual Kit, 09825-87901.

Operating and Programming Reference (09825-90200) — Explains installation, keyboard and
tape cartridge operations, and the HPL programming language. Additional chapters cover the
Advanced Programming, String Variables and Systems Programming language extensions.

I/O Control Reference (09825-90210) — Describes the interfacing and peripheral-control op-
erations built into the 9825B: General I/0O, Extended I/O, and HP 9862A/9872A Plotter control.
the 9825 Interfacing Concepts Guide is included with this reference. Space is provided for
keeping interface manuals and interface operating notes.

9825A/B Pocket Reference (09825-90012) — Lists all HPL syntax and error codes in a handy,
pocket-size format.

9825A/B System Test Booklet (09825-90037) — Explains how to run each mainframe and
peripheral test supplied on the 9825 System Test Cartridge.

9825A/B Error Codes Booklet (09825-90015) — Error codes listed in a small booklet kept
under the computer’s paper-access lid.

Matrix Programming (09825-90022) — Describes the HPL language extensions available with
the optional Matrix ROM.

Disc Programming (09825-90220) - Explains controlling HP Disc Drives via the HPL language

extensions supplied with the optional 98217A or 98228A Disc ROM. This manual replaces the
9885 Disc Programming Manual, 09885-90000.

rev: 11/80

Peripheral Operating Notes

Each of the following notes is shipped when you order the appropriate interface card or HP
computer peripheral. Each 98032A Interface note shows the interface wiring configuration for
a particular interface application. Most notes contain detailed programming instructions for
the system application. These operating notes are currently available:

e 9863A Tape Reader Operating Note (09825-9004 1)

e 9864A Digitizer Operating Note (09825-90042)

e 9866A/B Printer Operating Note (09825-90043)

© 9869A Card Reader Operating Note (09825-90044)

e 9871A Printer Operating Note (09825-90045)

¢ 9883A Tape Reader Operating Note (09825-90046)

¢ 9884B Tape Punch Operating Note (09825-90047)

e 9881A Printer Operating Note (09825-90048)

e 6940A Multiprogrammer Operating Note (09825-90049)
e 98035A Real Time Clock Operating Note (09825-90054)

© 9875A Tape Cartridge Memory Operating Note (09825-90075)

Interface Manuals

These 9800-series interfaces and manuals are currently available:

e 98032A Parallel I/0 Interface Installation and Service (98032-90000)
e 98033A BCD Interface Installation and Service (98033-90000)
¢ 98034A HP-IB Interface Installation and Service (98034-90000)
e 98035A Real Time Clock Installation and Service (98035-20000)
¢ 98036A Serial /O Interface Installation and Service (98036-90000)
e HP 9878A 1/0O Expander Installation and Service (09878-90000)
A brief description of each interface is in your 9825B I/O Control Reference. More complete

information can be found in the Interfacing Concepts guide supplied with the 1/O Control
Reference.

Installation

Chapter 1
Table of Contents

Inspection Procedure 1-3
Power Cords ... e 1-4
Power RequUirements 1-5
FUSES . 1-6
Initial Turn-On Instructions 1-6
Computer TeStING . ..o 1-7
Loading Printer Papero 1-7
ACCeSSOry ROMS 1-8

ROMINstallation 1-8
Pre-recorded Programs 1-11
Service CoNtracCtSo 1-11
Keyboard Magazine 1-12
Table MouNting 1-12

1)

=/

1-2 Instaiiation

Notes

Chapter 1

Installation

inspection Procedure

The individual parts of your computer system were thoroughly inspected before they were
shipped to you. All equipment should be in good operating order. Carefully check the compu-
ter, plug-in ROMs and peripheral equipment for any physical damage sustained in transit.
Notify HP and file a ciaim with the carrier if there is any such damage.

Please check to ensure that you have received all of the items which you ordered and that any
options specified on your order have been installed. The options installed are listed on a label
under the computer's paper-access cover.

NOTE
The standard 9825B is configured with 24 Kbytes of read/
write memory and 9872 Plotter operation. If you wish to con-
figure the system for 9862A Plotter operation or a larger
memory, contact your HP Service Representative for assist-
ance.

Also inventory the items in the Manuals Kit (09825-87901) and the Miscellanious Kit (09825-
80003). A pack list is suppled in each kit.

If you have any difficulties with your system, if it is not operating properly, or if any items are
missing, please contact your nearest HP Sales and Service Office; addresses are supplied at
the back of this reference.

1-3

1-4 installation

Power Cords

Power cords with different plugs are available for the calculator; the part number of each cord
is shown below. Each plug has a ground connector. The cord packaged with each calculator
depends upon where that calculator is to be delivered. If your calculator has the wrong power
cord for your area, please contact your local HP sales and service office.

8120-1351 8120-1369
Q ~ CALCULATOR
. & e POWER-INPUT
S %L Y
N 2 < N
L - S
8120-1378" 8120-()6%2 8120-2104
L = Line or active Conductor (also called "'live" or “hot").
N = Neutral or Identified Conductor.
E = Earth or Safety Ground.

To protect operating personnel, we recommend that the computer be properly grounded. The
computer is equipped with a three-conductor power cable which, when connected to an
appropriate power receptacle, grounds the computer. Do not operate the computer from an
ac power outlet which has nc ground connection.

1UL and CSA approved for use in the United States of America and Canada with calculators set for either 100 or 120 Vac operation.

2L and CSA approved for use in the United States of America and Canada with calculators set for either 220 or 240 Vac operation.

Installation 1-5

Power Requirements

The 9825 Computer has the following power requirements.

e Line Voltage: 100 Vac + 5%, —10%
120 Vac + 5%, —10%
220 Vac + 5%, —10%
240 Vac + 5%, —10%

Switch Selectable

e Line Frequency: 48 to 66 Hertz

e Power Consumption: 100V @ 2.0A
120V @ 1.8A
220V @ 0.8A
240V @ 0.8A

1-6 Installation

Fuses

For 100 or 120 Vac operation, use a 3A fuse; for 200 or 220 Vac operation use a 1.5A fuse.

WARNING
TO AVOID THE POSSIBILITY OF SERIOUS INJURY, DIS-
CONNECT THE AC POWER CORD BEFORE REMOVING OR
INSTALLING A FUSE.

o,

i L
~ LINE SELECTOR

Location of Fuse

The figure shows the location of the fuse under the paper cover. To change the fuse, first
disconnect the power cord to the calculator. Then remove the fuse cap by pressing inward
while twisting it counterclockwise. Remove the fuse from the cap and insert the correct re-
placement fuse (either end) into the cap. Finally, put the fuse and cap back into the fuse
holder. Press on the cap and twist it clockwise until it locks in place.

Initial Turn-On Instructions

1. With the calculator disconnected from its ac power source, check that the proper
calculator fuse has been installed for the voltage in your area (see previous section).

2. Next, ensure that the two voltage selector switches under the paper cover are set for the
correct powerline voltage. The ficure below shows the correct settings for each nominal
line voltage. If it is necessary to alter the setting of either switch, insert the tip of a small

screwdriver into the slot on the switch. Slide the switch so that the position of the slot
corresponds to the desired voltage, as shown below.

ag Ll

100 valts 120 voits 220 voits 240volts

Nominal Line Voltage Settings

Installation 1-7

3. The operating system module on the right-hand side of the 9825A calculator must be
inserted so that it is even with the side of the calculator.

4. Install the desired ROM cards and interface cards. See the next page and refer to the
appropriate manual for interface installation.

CAUTION
ALWAYS TURN OFF THE CALCULATOR WHEN INSERTING
OR REMOVING ROMS AND INTERFACES. FAILURE TO DO
SO COULD DAMAGE EQUIPMENT.

5. Connect the power cord to the power input connector on the back of the calculator.
Plug the other end of the cord into the ac power outlet.

6. Switch the calculator on using the switch on the right-hand side of the calculator.

o

Computer Testing

If you wish to test your calculator, or if there is any doubt that your calculator is operating
correctly, refer to the System Test Booklet for the calculator test procedure.

Loading Printer Paper

The internal printer uses special heat-sensitive (thermal) paper. When ordering paper, specify
the six-roll pack, HP part number 9270-0479.

To load a roll of paper:

1. Lift the paper cover and remove the paper spindle. Discard the old paper core and
remove any paper left in the printer using the paper advance wheel.

2. Install the new roll as shown in the following figure.

3. Insert the free end of the paper and advance it through the printer using the paper
advance wheel.

1-8 Installation

Loading Printer Paper

CAUTION
HP THERMAL PRINTER PAPERS ARE DESIGNED SPECIFI-
CALLY FOR USE WITH HP DESKTOP COMPUTERS. USE
OF OTHER PAPERS MAY DAMAGE THE PRINTER. TO
MAINTAIN A VALID WARRANTY OR SERVICE CONTRACT
AND ENSURE PROPER PRINTER OPERATION, USE ONLY
HP THERMAL PAPER.

Accessory ROMs

Several ROMs (Read Only Memories) are available for your computer; each provides addi-
tional language capabilities to perform specific tasks such as plotting, controlling peripherals
or extending the programming capabilities. One or more ROMs are packaged in a ROM carad.

ROM Installation

A ROM card can be plugged into any one of the four ROM slots on the bottom front of the
calculator as shown below.

ROM Installation

To install a ROM, first turn off the calculator. Then slide the ROM, with the label right-side-up,
through the ROM slot door. Press it in so that it is even with the front of the calculator.

rev: 11/80

Installation

The ROMs listed below are an internal part of the 98258 Computer. They can be purchased in
various combinations for the 9825A.

String Variables ROM

This ROM enables the calculator to recognize and operate on letters and words (“'strings”) in
much the same way that it recognizes and operates on numbers. Some of the capabilities
which are provided include: single strings and string arrays, numeric value of a string of
digits, concatenation, and displaying or printing all special characters.

Advanced Programming ROM
This ROM extends the programming capabilities of the 9825 Calculator. For/next looping,
split and integer precision number storage, multiparameter functions and subroutines, and

the cross reference statement are the operations provided by the Advanced Programming
ROM.

9862A and 9872A Plotter ROMs
These ROMs enable the 9825 to control HP 9862A and 9872A Plotters. Axes can be drawn and
labeled; functions can be plotted; and in the “typewriter” mode, characters can be printed as

you type them from the keyboard. More than one plotter can be operated at the same time with
each ROM.

General /O ROM

The General I/O ROM provides basic 1/O capability with formatting. Most 9800 series
peripherals (not the 9862A Plotter) can be controlled using this ROM. Binary /O, status
checking, and limited control of instruments via the HP Interface Bus are also provided.

Extended |/O ROM

The Extended 1/0 ROM extends the 1/0 capability of the calculator by providing complete

HP-IB control, bit manipulation and testing, auto-starting, error trapping, and interrupt
capabilities.

1-9

1-10 Installation

These ROMs are available for 9825A and 9825B Computers:

Matrix ROM

The Matrix ROM extends the language to include statements for manipulating matrices and
arrays. Addition, subtraction, multiplication, and division of arrays, as well as inversion, trans-
position, and determinants of matrices are only some of the capabilities provided by this ROM.

Disk ROMs

The HP 98217A Disk ROM adds HPL language statements and functions for controlling
HP 9885M and 9885S Flexible Disk Drives. Each 9885 Drive handles a Y2 megabyte flexible
disk. Both data and programs can be stored in a random-access, file-by-name structure. Up
to eight 9885M (master) drives can be accessed. Up to three 9885S (slave) drives can be
accessed via each 9885M.

The HP 98228A Disk ROM provides HPL language for controlling both HP 9885 and HP 9895
Disk Drives. Each 9895 handles one or two 1.2 megabyte flexible disks. The 98228A ROM can
be used only with a 9825T computer.

Systems Programming ROM

This ROM add capability for remote keyboard operation, program self-modification, intelligent
terminal emulation and run-time memory allocation. This ROM is available as the 98224A
plug-in card for 9825A. The ROM is added to the 9825B with the large memory option (9825T).

rev: 11/80

Installation 1-11

Prerecorded Programs

Tape cartridges containing programs for solving problems from many disciplines are availa-
ble. A utility program cartridge is supplied with each calculator. For a complete list of pre-
recorded programs and for pricing information, contact any HP sales office (addresses are
provided in the back of this manual).

Service Contracts

When you buy a Hewlett-Packard desk-top calculator, service is an important factor. If you are
to get maximum use from your calculator, it must be in good working order. A HP Maintenance
Agreement is the best way to keep your calculator in optimum running condition.

Consider these important advantages:

e Fixed Cost— The cost is the same regardless of the number of calls, so it is a figure that
you can budget.

e Priority Service— Your Maintenance Agreement assures that you receive priority treat-
ment, within an agreed upon response time.

e On-Site Service— There is no need to package your equipment and return it to HP. Fast
and efficient modular replacement at your location saves you both time and money.

e A Complete Package— A single charge covers labor, parts, and transportation.

e Regular Maintenance — Periodic visits are included, per factory recommendations, to
keep your equipment in optimum operating condition.

¢ Individualized Agreements— Each Maintenance Agreement is tailored to your support
equipment configuration and your requirements.

After considering these advantages, we are sure you will agree that a Maintenance Agree-
ment is an important and cost-effective investment.

For more information please contact your local HP calculator sales and service office.

installation

Keyboard Magazine

Keyboard is a periodical magazine containing general information about HP calculators and
related equipment. It includes articles and programs written by calculator users, description
of the latest equipment and prerecorded programs, programming tips, and many other items
of general interest to calculator users.

To receive your free subscription to Keyboard, merely complete the order form supplied.

Table Mounting

Your calculator can be mounted to the top of a desk or table by following these steps:

1. Drill 5 holes in the top of your desk or table to accommodate #6-32 (National Coarse)
screws according to the diagram below.

2. Remove the Phillips head #6-32NC screws that hold the rubber feet to the bottom of the
calculator.

3. Use screws that are ¥2 inch longer than the thickness of the table top. This %2 inch allows
for the thickness of the rubber feet and the hole for the screw in the bottom of the

calculator.
11.840 —— o
|-—5.920—-
ref to rear
4 (Y ¥

1.500 1.500
+ + + |-+

! |

| 1

1 |

) 1

| 1

10.705 \ (dimensions :

| in inches) |

' ‘

I 1

1 i

| 1

l
-+ |

7.300 ! : 7
ref to front : ¢ ¢ caleul i 300
4 L ront of calculator |)
.460 l | 10.920 | I

460
Il

\\

Keyboard Operations

Chapter 2
Table of Contents

Before Using the Calculator oo 2-3
General Information 2-4
The Keyboard 2-4
Display and Line Length 2-5
RaNge ... 2-6
Significant Digits 2-6
MmOy 2-6
Language ... 2-8
Error Messages 2-8
SYStemM Keys ... 2-9
Keyboard Arithmetic 2-10
Arithmetic Hierarchy 2-11
Variables 2-11
Operating Modes ... 2-12
Basic EIting 2-13
System Command KeyS 2-14
Display Control Keyso 2-16
Line Eiting Keys o 2-17
Character Editing Keys 2-18
Calculator Control Keys ... 2-19
Special Function Keys 2-21
Immediate Execute Special FunctionKeys.................. 2-22
Immediate Continue Special Function Keys 2-22
Keys with Multiple Statements 2-23
CommaNdSo 2-24
The Run Command (run) 2-24
The Continue Command (CONt) 2-24
The Delete Line Command (del) 2-25
The Erase Command (erase) i 2-26
The Fetch Command (fetch) 2-27
Live Keyboard o 2-28
How Live Keyboard Works 2-28
Live Keyboard Math 2-28
Statements in Live Keyboard 2-28
Subroutines from Live Keyboard 2-29

—

-1

2-2 Keyboard Operations

Special function Keys in Live Keyboard 2-29
The Stop Key in Live Keyboard 2-30
Live Keyboard Limitationso 2-30
THE DISPIAY .« oot 2-31
The Live Keyboard Enable Statement 2-32

The Live Keyboard Disable Statement i 2-32

Chapter 2

Keyboard Operations

This chapter introduces some of the operating characteristics of the 9825 Desktop Computer.
The keyboard, display, and range are a few of the topics covered.

Before Using the Calculator

There are a few things you shouid check each time you turn on the caiculator.

If the calculator is turned off:

e Set the power switch on the right-hand side of the calculator to the “1” position:
¢} [
- CD]
e When the following display appears, the calculator is ready for use:

(+)

If the calculator is turned on and the display is blank:

o Press or

If the display still remains blank, first check the power connection and fuse as described in
chapter 1. If you still have a problem, call your HP sales and service office listed in the back of
this manual.

If the calculator is on and the display shows the “lazy T, you can do keyboard operations or
arithmetic or you can enter programs and run them.

2-4 Keyboard Operations

General Information

The Keyboard

Special Function Keys

cooooooooo.o
T oo clolalolololofoles)
Elololollololblolciole
oo@@®o@®ccoo

S)

.@@@

\ - - T

/

Alphanumeric Keys

Numeric Keys

e Alphanumeric Keys - This area is very much like a standard typewriter keyboard. For

instance, to display a capital A, press the shift key and

@ at the same time; or to

display a percent sign, %, press the shift key and (&) at the same time.
5

e Numeric Keys - All the keys needed to enter numbers and do simple arithmetic are

located in this block. The numeric keys in the alphanumeric section of the keyboard can
also be used to enter numbers. The exponentiation and square root key, @ is located

in the alphanumeric key section.

e Special Function Keys - The keys in the upper right section of the keyboard, namely
through (+), provide additional calculator abilities. These keys are explained later in

the chapter.

Keyboard Operations 2-5

Keys of the same color have similar functions. For example, all the alphanumeric keys are the
same beige color; gold colored keys are control keys used to run programs, store lines, erase
programs, etc.

Below are a few more topics related to keyboard operations:

e Spacing - In general, spaces are not important. It makes no difference, for example if
you key in:

Both are interpreted the same. Spacing, however, is important when using text (charac-
ters within quotes) and when printing and displaying messages.

o Repetition of Keys - When a key is held down, its operation is repeated rapidly. This is
an especially useful feature with the editing keys.

e The i~ Symbol - When the display is clear and awaiting inputs, the “iazy T symbol
appears in the leftmost character of the display. This symbol also indicates the end of a
stored line.

e The Run Light - A small red light in the Ieft end of the display lights when a program is
running.

Display and Line Length

The 9825 Calculator has a 5 X 7 dot matrix, 32-character display. Even though only 32
characters can be displayed at one time, up to 80 characters can be keyed into the display.
After the 32nd character, additional characters which are keyed in cause the displayed line to
shift to the left. After 67 characters are keyed, a beep indicates that only thirteen more
characters can be entered. Up to 73 characters can be stored. This includes any spaces or
parentheses which the calculator may automatically insert in the line.

2-6 Keyboard Operations

Range

The range of values which can be entered or stored is —9.99999999999 x 109 through —1 X
107°%,0, 1 X 1079 through 9.99999999999 x 10%°. However, the range of calculations is from
—9.99999999999 x 10%'! through ~1 X 1075, 0, and 1 X 10 -5'' through 9.99999999999 X
10511,

Storage Range

: f i i
—9.99999999999 x 10%° -1x107% 0 1x10°% 9.99999999999 x 10%®
Calculating Range

—9.99999999999 x 105" -1 x 105" 0 1 x 1075 9.99999999999 x 105!

within range |___|

The extended calculation range is useful for calculations which have intermediate results
outside of the storage range, but which have final results within the storage range. For in-

+ .
siance:

out of range

(9.2 X 1023 x 8.6 x 1089)/(1 x 1024)

When the first two values are multiplied their result is:

(7.912 x 10104)

This intermediate result cannot be stored, but the final result, 7.912 x 108°, can.

Significant Digits

All numbers are stored internally with 12 significant digits in the mantissa and a two digit
exponent. The format used to display or print numbers (such as +
internal representation of a number.

) has no effect on the

Memory

The 9825 Calculator uses two types of memory; Read/Write Memory, and Read Only Mem-
ory. Read/Write Memory is used to store programs and data. When you store a program or
data, you “Write” into the memory. When you access a line of your program or a data element,
you “Read” from memory; thus the term Read/Write.

Keyboard Operations 2-7

Read Only Memory differs in that it is permanent. When the calculator is turned off, the
contents of the Read/Write memory are lost, whereas the Read Only Memory is unaffected.
ROM (for Read Only Memory) cards can be plugged into the ROM slots on the front of the
calculator. This makes it possible to expand the language.

Programs and data in Read/Write memory can be saved for future use by recording the
information on the tape cartridge.

A small amount of memory is sometimes required by a plug-in ROM. This area is called
“working storage”.

Read/Write Memory Organization

low addresses

. Working Storage
This boundary is fixed at turn-on —— =

Special Function Key Definitions

User’s program

4]
r1

r-variables
re

Unused area
(Used as needed)

Execution Stack
(subroutine return pointers)

Arrays and simple variables

Loaded Binary program (if any)

Permanently fixed boundary —s
Reserved for internal use (flags)

high addresses

2-8

Keyboard Operations

Language

The language used by the HP 9825 Calculator is called HPL. The basic programming unit is
the statement. Statements are typed using lower case abbreviated mnemonics, such as %
for print. Multi-statement lines can be stored by separating statements with semicolons.

Two other characteristics of this language are implied multiplication and the assignment
operator. Implied multiplication is a standard algebraic notation, such as 5X. The assignment

More mnemonics can be added to the language by adding ROM cards which plug into the
ROM slots on the front of the calculator.

Error Messages

When an error occurs, the calculator beeps and displays an error number. The number
references a description that will help pinpoint the cause of the error. For example:

L ETE

If an error message is displayed during an attempt to run a program, the program line number
where the error occurs will also be displayed. For example:

\j Indicates a syntax error.

F arror 1T in 3 \] Indicates that a parameter is out of range in
line 3.

Pressing after some error messages will bring the line containing the error into the display
with a flashing cursor indicating the location of the error.

A complete list of the error codes is at the back of this manual.

Keyboard Operations 2-9

System Keys

The following keys are used often for keyboard operations and programming.

g Clears the display; the symbol remains to show that the calculator is ready for further
instructions:

Performs the operation in the display. For example, to add 2 + 2:

Press: (2)(+)(2) [(z+z ﬂ

T omHdcomxm

Press:

Stores program lines in the memory. For example, to store a program line:

Type in: @C ' @ [7=5 D
Press: (\j

This program line will assign the value 7 to the variable A.

@ Runs the program in memory from line 0.

*The @ indicates that the following key is shifted.

2-10

Keyboard Operations

Keyboard Arithmetic

To perform a math operation, such as 8 x 2, first you key in the expression as follows:

)(2) EEE \]

Then press:

@
)\
U

To raise a number to a power, such as 82, press:

o6/of [

Notice that an operation such as 8-2must appear as:

The value which is displayed after pressing the execute key is stored in a location called
“result”. This value can be used in other calculations. For example:

Slololt)
=) (=

If you execute an operation involving large numbers, such as:

Keyboard Operations

the calculator displays the result in scientific notation, with 9 digits to the right of the decimal
point:

[=

This is because the number is too large for the fixed 2 notation which is set when you switch on

the calculator.

Arithmetic Hierarchy

When an expression has more than one arithmetic operation, the order in which the operations
take place depends on the following hierarchy:
square root performed first
exponentiation
no operator implied multiplication
“ multiplication and division
addition and subtraction performed last

An expression is scanned from left to right. Each operator is compared to the operator on its
right. If the operator to the right has a higher priority, then that operator is compared to the
next operator on its right. This continues until an operator of equal or lower priority is encoun-
tered. The highest priority operation, or the first of the two equal operations, is performed.
Then any lower priority operations on the left are compared to the next operater to the right. If
parentheses are encountered, the expression within the parentheses is evaluated before the
left-to-right comparison continues. This comparison continues until the entire expression is
evaluated. For example:

exponentiation
implied multiptication
multiplication
evaluate parenthesis
exponentiation
division

addition

i result

Variables

A variable is a name of a location where data is stored. There are two types of variables:
numeric variables and string variables. Each data type can be stored in either simple or array
form. Numeric data can also be stored in r-variables.

2-11

e
N

Kzyboard Operations

Simple Variables

Twenty-six simple variables, named A through Z, are used on the 9825 Calculator. Only the
upper case letters can be used for simple variable names.

To assign a value to a variable, the assignment operator is used. For instance, to assign the
value 4.5 to N, press:

OOEEEOE

The number always appears on the left, and the variable appears on the right side of the
assignment operation.

Now, N can be used in calculations. For instance, to multiply N by 2, press:

N is not changed. New values can be assigned to variables, such as:

HOO0O0HO)

)J

r-Variables

r-variables are designated by a lower-case "“r” followed by a number (e.g., +i). They are
useful for one dimensional arrays and can be used in addition to the 26 simple variables.

Inthe following two examples, the value 12 is assigned to r10. Then the value 20 is assigned to
the register designated by the value of r10 (this is called indirect storage).

The value 12 is assigned to r10 directly.

The value 20 is assigned to r12 indirectly.

For more information about variables, see the next chapter and the String Variables chapter.

Operating Modes

The calculator can operate in any of three modes: the calculator mode, the program mode,
or the live keyboard mode.

e In calculator mode, no program is running, and the calculator is awaiting inputs or
calculating keyboard entries.

Keyboard Operations 2-13

e Inthe program mode, a program is running.

e Inlive keyboard mode, you can perform many calculator operations while a program is
running.

Basic Editing

If you make a mistake while entering lines into the display, you can use the character editing
keys for changing the line.

(\

For instance, suppose you want to type in this line:

10—-A;12—->B

But, instead you type:

resulting display would be:

with a flashing cursor on the “1” of 12. To execute the line, press:

@

As another example, maybe you want to execute this line:

10 + 18 + 22

But you typed this:

2-1

4

Keyboard Operations

To insert a one in front of the 8, press the (] key 4 times. The flashing replace cursor
be positioned on the 8. Next, press the key. This changes the replace cursor to the insert
cursor 4. Now, type in a 1. The display will be:

Note that the rest of the line shifted to the right 1 character. The insert cursor 4 will still be
flashing over the 8 indicating that more characters could be inserted if desired. To execute the
line, press

(mcomem

System Command Keys

SYSTEM

Ster
cEeor

Returns the calculator and I/O cards to the power-on state without erasing programs or
variables. is executed immediately when it is pressed; it does not have to be followed by
. All calculator activity is halted and the line number of the current location in a programis
d;splayed if a program is running. The reset key should be used to reset the calculator when
no other key, such as or , will bring the calculator to a ready state.

Sets the print-all mode on or off. When it is pressed once, the word ::+: appears in the
display. When it is pressed again, the word =i ¥ appears in the display. In print-all mode,
displayed results, executed lines, and stored lines are printed.

While a program is running in print all mode, all displayed messages and error messages are
printed. Print-all mode can be turned on or off while a program is running.

w Automatically rewinds the tape cartridge to its beginning. Other statements and com-
mands can be executed immediately without waiting for the cartridge to completely rewind. If
is pressed while a program is running or while a line is executing from the keyboard, the
cartridge rewinds at the end of the current line.

Keyboard Operations

Executes a program, one line at a time. Then, the line number of the next line to be
executed is displayed. When is pressed just after stopping a program, only the line
number of the next line to be executed is displayed. The next time is pressed, that line is
executed.

To step from a specific line, execute a gto X, where X is the line to start stepping from. For
example, to begin stepping through your program from line 30, type in gto 30 and press O
Then use the step key.

EX) This typing aid is used to erase all or part of the Read/Write memory.

Erases the entire calculator memory.

Erases only the variables.

&
)
(o)
N N

Erases all the special function keys.

\d
| Erases programs and variables.
(in) Erases the special function key represented by
Lln".

The Reset Table in the Reference Tables appendix lists things affected by the erase com-
mand.

This typing aid is used to load programs and data from the tape cartridge. For example
to load a program which is on file 3:

@Q Loads the program from file 3 into the cal-
culator.
The display shows i:it (for “load file””) when this key is pressed. See the load file statement

in the Tape Cartridge chapter.

This typing aid is used to record programs and data on the tape cartridge. Before
recording on the tape cartridge, files must be marked (see the Tape Cartridge chapter). In the
following example, it is assumed that the file has been marked:

om|

@G Record the calculator program on file 6 of the
tape cartridge.

The display shows % (for “record file”) when this key is pressed (see the record file
statement in the Tape Cartridge chapter).

2-15

2-16 Keyboard Operations

This typing aid is used to list programs, sections of programs, all special functions keys,
or individual special function keys. For example:

| Lists the entire program.
@ @ Lists all defined special function keys in numer-
ical order.
Lists special function key, fo.
@@O Lists the program from line 20 to the end.

@O@@G Lists the program from line 9 to 13, inclusive.
Display Control Keys

— DISPLAY /

EBREN
EINES

Brings the line with the next higher-valued line number into the display. If there are no
more lines in the program, [+] clears the display and allows new program lines to be ap-
pended to the end of the program.

Brings the line with the next lower-valued line number into the display. If a line number is
in the display, brings that line into the display. If a stop statement is executed from a
program, (_+] brings the line following the line with the stop statement into the display. After a
program error, brings the line containing the error into the display for editing.

B VMoves the line in the display to the left. This allows all the characters in a line to be
moved into the display. Each time it is pressed, the displayed line moves 8 characters.

Moves the line in the display to the right for viewing all the characters in a line. Each
time this key is pressed the displayed line moves 8 characters.

Keyboard Operations 2-17

Line Editing Keys

UNE

This typing aid is used to bring program lines into the display and to fetch special
function keys. For example:

=00

Accesses special function key fa. If f4 is de-

fined, its definition is displayed. Otherwise

Brings line 20 into the display.

is displayed.

Deletes the program line in the display from the program. If no program line is in the
display, the calculator beeps and the key is ignored. To delete a program line, fetch the line
into the display and press .When a line is deleted from a program all subsequent line
addresses and all relative and absolute go to and go sub statements are renumbered to
reflect the deletion.

This is not the same key as the character delete key explained later. To delete several program
lines, the delete (del) command can be used. The delete command is explained later.

Inserts a line into a program. The inserted line is inserted before the fetched line. The
fetched line and higher line numbers are renumbered. The (==, (+], or (+) keys can be used
to fetch a line into the display. For example:

To insert the line:

Press: @
Type in:
Press:

= between lines 20 and 21:

an awoan

S
sy
~
-

[S
[ie’

When aline is inserted into a program, the branching addresses of all relative and absolute go
to and go sub statements are adjusted to reflect the insertions as in line 22 above.

2-18 Keyboard Operations

Brings back, into the display, one of the two previous keyboard entries. Pressing
once brings back the most recent keyboard entry. Pressing it twice brings back the previous
keyboard entry.

Press after errors resulting from keyboard operations to recall the line containing the
error. For many errors, a flashing cursor indicates the location of an error in the line.

Character Editing Keys

r Al

Lines which are fetched into the display using (+),(+},k=~J, or (==}, and lines which are typed
into the display can be edited using the character editing keys.

Two flashing cursors are associated with these keys: the replace cursor & and the insert

cursor 4.

position in the line in the display, toward the beginning (left) of the line. If the cursor is not
visible, causes the cursor to appear on the right-most character in the line.

position in the display, towards the last character in the line. For a line which has just been
fetched or typed into the display, pressing causes the flashing cursor to appear on the
left-most character in the display.

Deletes individual characters which are under the insert or replace cursor. This is not
the same key as the line delete key explained previously.

The insert/replace key is used to change the flashing replace cursor to a flashing insert
cursor and vice versa. Use the or key to position the cursor in the display. When the
insert cursor is flashing, any characters entered from the keyboard are inserted to the left of

the cursor and the characters under and to the right of the cursor shift to the right.

When the replace cursor is flashing, any character entered replaces the existing display
character at the location of the cursor and the cursor moves to the character on the right.

Keyboard Operations 2-19

Calculator Control Keys

E
H =
I RUN STORE SHIFT STOP c [CONTINVE] ' ENTER '
:
;

o This key is an immediate execute key which runs the program in the calculator begin-
ning at line zero. All variables, flags, and subroutine return pointers are cleared when
Q is pressed. The run light at the left end of the display indicates a running program.

The Reset Table in the Reference Tables appendix lists things which are affected by pressing

Stores individual program lines. Also, when a special function key is fetched and
defined, O is used to store the key’s definition. A program line can be a single
statement or several statements separated by semicolons. When an error occurs while at-
tempting to store a line, (= brings that line back into the display. A flashing cursor usually
shows where the error was encountered in the line.

@ and @ are used to obtain shifted keyboard characters, such as 4, #, and {". When

is pressed, the small light above the key lights. locks the keyboard
for shifted characters. Press to release shift lock.

Stops the program at the end of the current line. The number of the next program line to
e be executed is displayed. When is pressed, list, tlist, and wait statements are
aborted but the rest of the line is executed. When is pressed in an enter statement, flag 13
is set and the enter statement is terminated.

There is also a stop statement. For details, see the next chapter.

Executes the single or multi-statement line which is in the display. The two most recently
executed (or stored) keyboard entries are temporarily stored and can be recalled by
pressing once or twice. The result of a numeric keyboard operation which is not
assigned to a variable is stored in Result (see O key). For example:

ool =

macomxm

m—comsem|

)]

X

m—commem)

Pressing displays and stores the result. Pressing the execute key again repeats the same

operation.

2-20 Keyboard Operations

Although multiple expressions such as:

are allowed, only the result of the last expression in the line is displayed and stored in Result.
In print-all mode, both results are printed.

- Automatically resumes a program from where it was stopped. When a line
CONTINUE

number is in the display (such as after pressing) resumes the program
from that line. However, after pressing (=), or after editing the program, the program con-

tinues at line 0 when is pressed. Pressing after an error also causes the program to
continue from line 0.

In an enter statement, O is pressed after entering data. If no data is entered and is
pressed, the variable maintains its previous value and flag 13 is set. See also the continue
command on page 2-24.

@ Accesses the storage location of the result of a numeric keyboard operation which was
' not assigned to a variable. For example:

Press: @@@ L R \j
\J

Press:

mocomem

The answer, 18, is also stored in Result and can be used in other operations, such as:

Press: Q@@ { e Sj

In a program, values cannot be stored in Result; but the value in Result can be assigned to

Press:

mcomsen|

variables or used in computations.
For example:
This is not allowed.

This assigns the value of Result +2 to the vari-
able A,

@ Clears the display. If the clear key is pressed during the enter statement, a question
mark appears in the display, indicating that an entry is still expected. If this key is

pressed after a special function key has been fetched, the key number (e.g., #%i) appears in
the display.

Keyboard Operations 2-21

° The assignment operator is used to assign values to variables (this is not the same as
the right arrow used for display control.) For example:

Press: C @@ C @ This stores the square root of 5 in X.

To enter the value of o, this key is pressed. The value entered is 3.14159265360.

@ This key enters a lower case # into the display, representing an exponent of base 10.
The unshifted @ key can be used in place of . For example:

Press: @@@C [

)
»

Note that there is no difference between pressing and pressing @

Special Function Keys

Cod 0 () G G ()

There are 12 special function keys, which provide 12 unshifted functions and 12 shifted
functions. The special function keys can be used as typing aids, one line immediate execute
keys, or as immediate continue keys.

To define a special function key, press and the special function key to be defined. Then
enter aline in the display. Press to store the definition of the key and to exit key mode. For
example:

Press: i is displayed if the key was not previously
defined.

Type-in: s Enters =+ in the display.

Press: e This stores % under f;, for use as a typing
aid.

If you decide not to define a special function key after fetching one, the (+=) key can also be
used to exit key mode.

To list all of the defined special function keys in numerical order, type in: i:

X
£
¢
V-
b
E

.k and press

2-22 Keyboard Operations

To list individual special function keys, press and then the special function key to be
listed.

Immediate Execute Special Function Keys

immediate execute key. This means that when the key is pressed, the contents of the key are
appended to the display and the line in the display is executed automatically.

For example:

Press: (=) (] 0 Accesses fas (shifted f11).

Type-in: The asterisk makes this an immediate execute
key.

Press: This stores the line entered in the display
under fa3.

Whenever [is pressed and the display is clear, the following is printed:

i S, id

Immediate execute keys are useful for executing selected segments of a program. Using the
continue command followed by a line number, you can make several entry points in your
programs. For example:

Each time is pressed, the program continues at line 5, or at line 10 if is pressed.

Immediate Continue Special Function Keys

If a line to be stored as a special function key is preceded by a slash (), it is an immediate
continue key for use with the enter statement. “Immediate continue” means that when the key
is pressed, the contents of the key are appended to the display and continue is executed
automatically. Immediate continue keys are used to enter often used values in enter state-
ments. For example:

Keyboard Operations

Press: Fetches special function key f1o.

Type-in: This enters the value of e, the base of the

natural logarithms, into the display.
Press: This stores the line in the display under f1o.

Whenever an enter statement is waiting for a value and the key is pressed, the approxi-
mate value for e (i.e., 2.71828182846) is entered and the program continues (see enter
statement in the next chapter).

Keys with Multiple Statements

By separating statements with semicolons, several statements can be stored under one spe-
cial function key. As an example, suppose you want to convert inches to centimeters. The
following line is stored under special function key (fo].

Press:

Type-in:

Press: (smon

Then key in a number, such as 6, and press (o). The display will show:

(

2-23

2-24 Keyboard Operations

Commands

Five commands are explained in this section. Commands can be executed only from the
keyboard; they cannot be stored as part of a program.

The Run Command

#1411 [line number or label]

The run command clears all variables, flags, and subroutine return pointers and then starts

program execution. If a line number or label is specified, the program begins execution at the

specified line number or label. Since 3 is an immediate execute key equivalent to .

coms

1, the word #+:: must be keyed in to run from a line number or label.

Examples:

Run beginning at line 0. This is the same as
pressing D

Run, beginning at line 20.

GEEEEEE

Run, beginning at the label “third".

The Continue Command

=1 [line number or label]

The continue key (cont) command continues the program without altering variables, flags, or
subroutine return pointers. If no line number is specified, then the program continues from the
current position of the program line counter. When a line number or label is specified, the
program continues at the specified line or label. |f the program has been edited or an error has
occurred since the program ran, continue without parameters causes %Soution to begin at

¢, the word «enest

e/

line 0. Since F\/ is an immediate execute key equivalent to i B
must be keyed in to continue at a line number or label.

Keyboard Operations

Examples:

Continue from current position of program line
counter. This is the same as pressing D

Continue from line 3.

Continue from the label “loop”.

@

The Delete Line Command

% beginning line number [: ending line number] [%]

The delete (del) command is used to delete lines or sections of programs. When one line
number is specified , only that line is deleted. When two line numbers are specified, all lines in

the block are deleted. To delete an entire program, and leave the variables,
be executed.

Examples:

Delete line 28.
Delete lines 13 through 20.

Delete program from line 18 to the end. (This

does not affect variables.)

An attempt to delete lines that are destinations of relative or absolute go to or go sub state-
ments (except labels) will cause error 36. To delete these lines, the delete command with the
optional asterisk parameter can be used. When the asterisk is used, any go to or go sub
statements which reference deleted lines are adjusted to reference the first line after the
deleted section. For example to delete line 24 in this program segment:

2-25

2-26 Keyboard Operations

Type-in:

Press:

Press:

m—comm]

0/0/0/0/0

The Erase Command

- or special function key]

The erase command is used to erase programs, variables, and special function keys as shown
below.

Command Meaning

Erases program and variables.
Erases everything (like switching the calculator

off and then on again).
Erases all variables.

Erases all special function keys.

Erases the indicated special function key.

Things affected by the erase command are listed in the Reset Table (see the Reference Tables
appendix).

Keyboard Operations 2-27

The Fetch Command

1 ok [line number or special function key]
The fetch command brings individual program lines into the display. This is useful for editing
lines or for viewing individual program lines. Fetching a special function key displays the
definition of the key or ¢ followed by the key number if the key is undefined. Executing fetch

alone, fetches line 0.

Examples:

Fetch line 10.

D Fetch special function key ().

2-28 Keyboard Operations

Live Keyboard

The calculator’s live keyboard mode provides additional power for executing single or multi-
statement lines while a program is running. Among other things, you can perform math opera-
tions, monitor program activity, and alter program flow in live keyboard mode. Two statements
described in this section permit the live keyboard mode to be turned on or off.

How Live Keyboard Works

While a program is running, a live keyboard operation is executed as follows:
e The live keyboard operation is keyed into the display and is pressed.
e Atthe end of the current program line, the live keyboard line is executed.

e The live keyboard operation is executed entirely before the program continues.

Live Keyboard Math

Any math operations can be executed from live keyboard. Thus, when a program is running
and a few calculations need to be made, key in the operation and press O

Statements in Live Keyboard

Math operations are just a small part of what can be done from live keyboard. If you want a
listing of the current program, press O

i and press

. The current value of the variable will be displayed.

To change a variable from live keyboard, enter the new value and assign it to the variable to be
changed. For example to reset a counter such as i + 1 - :to 0, key in % + i and press O

E

Keyboard Operations 2-29

Subroutines from Live Keyboard

Parts of a program can be executed from live keyboard as subroutines using the go sub
statement. For example, the following section of a running program is used to monitor the
variables used in the program:

By executing - o k", the values of the variables are printed and control returns to the
program.

After a subroutine is finished, control returns to the main program when the return (ret) or stop
(stp) statement is executed or when a stop flag at the beginning of a line is encountered.

Special Function Keys in Live Keyboard

Although the special function keys fo through f23 cannot be defined from live keyboard, they
can be used from live keyboard. In this example, the special function keys are used to alter the
flow of the running program.

The special function keys are defined as follows:

The program is:

Ll
SArEsR e
7 Sk B g 3
Tirst taEsFs
ORI 11 L e’
RPN =St s S
RS RENRNE S TR | y
e G el x
R TE A el
SR S
O TEE SRR s (R v
third iers
LT A PR R L R]
Third"182F;
P ey o 1
=R SR F i I A

2-30 Keyboard Operations

When the program is run, = is displayed until one of the immediate execute (line

either + < is printed. Although this is a simple example, it shows

-, I

one way that special function keys can be used in live keyboard mode.

The Stop Key in Live Keyboard

If . is pressed during a live keyboard operation, the live keyboard operation is stopped, but
the program continues. Pressing . a second time will stop the program.

Live Keyboard Limitations

Operations that modify the stored program or special function keys and operations that di-
rectly affect the execution of the program are not allowed in live keyboard mode. These
operations include the following:

Mnemonic Error
Commands:
run error 03
cont error 03
fetch error 03
erase error 03
del error 03
Statements:
ent error 13
end error 09
gto (allowed in a live key-
board subroutine) error 09
Idp error 64
ldk error 64
Idf (program file) error 64

In addition, the following keys cause a beep and are ignored when pressed in live keyboard
mode.

D (=) (=) ()

Keyboard Operations 2-31

The Display

Lines which are typed in live keyboard mode will disappear from the display if the running
program uses the display. The live keyboard line is re-displayed after each keystroke so that
the line with the new character added can be seen.

If the running program continually uses the display, the live keyboard lines will not be visible
while the line is being typed. In this case, the line that is currently being typed, or the line
accessed by can be held in the display by pressing or (+). These keys will suspend
the running program for one second and display the line. If the key is kept depressed, the
program will be halted for one second after it is released. After the line is executed, the (+) or
() key will not re-display the line unless is pressed first. For example, suppose the
following program is running in the calculator:

When the following line is typed in live keyboard, it will not be visible:

Press (+] or(+]) and the line will be displayed for about one second. When is pressed,
the line will be executed and 5 will be stored in A and printed.

meicOmm]

Results of calculations performed in live keyboard disappear from the display if a running
program uses the display. The (+] or (+_) keys only hold the live keyboard line in the display
and not the result of the execution of a line. The result can be held in the display by appending
a wait statement to the end of the line (e.g.

A special function key can be defined to preserve the displayed result long enough to be
viewed as in this example:

Press:
Type in:

Press: s

As you type in a calculation such as

press instead of . The result of the calcula-
tion will remain in the display for about one second.

mecmxm

2-32 Keyboard Operations

The Live Keyboard Enable Statement

The live keyboard enable (lke) statement enables the live keyboard mode. For example:

Enable live keyboard.

Live keyboard is automatically enabled when the calculator is turned on, : . IS executed,
or is pressed. To disable live keyboard, the live keyboard disable (Ikd) statement is used.

The Live Keyboard Disable Statement

The live keyboard disable (lkd) statement disables live keyboard mode. For example:

The first line of this program disables live
keyboard.

To re-enable live keyboard during a program it is necessary tc execute the live keyboard
enable (lke) statement from the program.

Q (=), and (=) are the only keys recognized while a program is running with live keyboard
disabled.

During cartridge operations, the keyboard is disabled and all keys except are ignored.

N

Programming 3

Chapter 3
Table of Contents

Programming ConCepts i 3-3
Syntax Conventions 3-6
Numeric Variables 3-6
Simple Variables 3-6
Array Variableso 3-6
F-Variables . ..o 3-7
Variable Allocation 3-8
Number Formats 3-8
The Fixed Statement (fXd) 3-9
The Float Statement (fIt) 3-10
Significant Digitso 3-11
RoUNding ... 3-11
The Display Statement (ASP)ot 3-12
The Print Statement (prt) oo 3-12
The Enter Statement (ent) 3-13
The Enter Print Statement (enp) 3-15
The Space Statement (SPC) .. ittt 3-16
The Beep Statement (Deep)o 3-16
The Wait Statement (wait) 3-16
The Stop Statement (StP) oo 3-17
The End Statement (end) 3-17
HierarChy . 3-18
OPRErators o 3-19
Assignment Operators (=) 3-19
Arithmetic Operators (+, —, X, /, 1, mod) 3-19
Relational Operators (=, >, <, =>, <=, #) i, 3-20
Logical Operators (and, or, XOr, NOt) 3-21
Math Functions and Statements 3-22
General Functions(V/, abs, sgn, int, frc, prnd, drnd, min, max, rnd) 3-22
Logarithmic and Exponential Functions (In, exp, log, tn1) 3-24
Trigonometric Functions and Statements (deg, rad, grad, units, sin, cos, tan, asn, acs,
AN 3-25
Math ErrOrS . 3-26
Flags 3-28
The Set Flag Statement (sfg) 3-28

1)

3-2 Programming

The Clear Flag Statement (cfg) 3-29
The Complemeht Flag Statement (cmf) o 3-29
The Flag Function (flg) o 3-30
Branching Statements 3-30
Line Renumberingo 3-30
Labels o 3-31
The Go To Statement 3-31
Absolute GO TO (GI0) - .. oo 3-32
Relative Go To (Qto+, glo—) ... 3-32
Labelled GO To (Qt0 ") o 3-32
The Jump Statement (JMp) 3-33
The Go To Subroutine and Return Statements o i 3-34
Absolute Go Sub (gsb) 3-34
Relative Go Sub (gsb+, gsb—) 3-34
Labelled Go SUD (gSD ...} . ..o 3-35
Calculated Go Sub Branching (gsb....jmp) 3-35
The lf Statement (if) 3-36
N-Way Branching (gto...; if..; gto) 3-37
The Dimension Statement (dim) 3-37
Specifying Bounds for DImensions 3-38
The Clear Simple Variables Statement (CSV)o 3-39
The List Statement (list) 3-39
Used and Remaining Memory 3-40
Program Debugging 3-41
Finding the Problem 3-41
Fixing the Problem .. . 3-41
The Debugging Statements (trc, stp, Nor) ... 3-43

Programming HINtS ... 3-46

3-3

Chapter 3

HPL Programming

This chapter introduces the statements, functions and operators comprising the HPL lan-

guage.

Programming Concepts

There are five basic steps in creating a program:

1. Define the Problem.
2. Decide how the problem is best solved.
3. Write out the statements for the program.
4. Key the statements into the computer memory.
5. Debug (correct) and run the program.
Step 1:

As a simple example, suppose you want to print the square root of each value that you enter.

Then, if the value entered is negative, print a message and continue on.

Step 2:

A common method used to solve a problem is flowcharting*. Using a few basic flowcharting

symbols, explained at the end of this chapter, we will flowchart the problem.

Enter a Display
value message

—™

Is
the value
neg?.

Yes

Take square
root of value

Print the
square root

* Another method suitable for simple problems is to key in a few statements and try them out.

3-4 Programming

Step 3:

ram:
s for the prog
hart, write down the statement

Cc)

From the flow

Comments

”Wiuk!ll‘l Dm
sibm <
k«i

=

o
s mﬂm S

o

e ,g’ ':992” L o
e
s

i it
' e i

o — j : :
g . :
wgumg s 0 i

i
]
s wmm et
. i
mm i
lop il

gga . Mm
I o
ﬂ ' w i
XW((M

i
i WxM

ol i -

mss’i‘; i xm

‘x«xxxxxxﬁn ol

“M

5

i:
;

e
ﬁi

su

1t

c'»'
- :75?‘“
,m,!ﬁ
e

i
iy
etga e
e
S’d’lxnm
i sm ww

:?;"Z f
e

i

.
Sx&nxﬁa» AL
mmm vt 14

e
e o
s
.
o

e e ”,“5“

o
e

i

S

Step 4:

in the program
Then type in :
| i the
xeeuting i tore that line in
alculator by e Hline 1o s .
The next step is to clear the C_ Press (==« at the end of eacl:. oress O and type the
i t a time. the line.
exactly as above, one line a @ 3 mistake before you siore
i ma
i mory. if you

calcuiator me
line over.

Step 5:

the progran
Then, to run .
to get & prinied fstng. s C The calculator will
i ess res [CONTINU.
Alter e proaram Is stored p'r displayed, type in a value and p
im tsis .
Each time tha
press @

lue.
rint the square root of each va
p

[m-comxm

il
e
g
wm, g,
o o

s, i

S
\mww»mm 3 i
m,mmmnm mmxi s s
wxxw »zl,u. o "‘“ ”"
6 i) M,ML ol '««“gn« b xmawm w!;c b *3 e
i R il Lo i
e g i it ;;Mmp‘;** L s ‘;ﬁm uzzzmw Ve
g i L K “mm M i = o Al
miii.,i‘ﬁ’f‘?‘m?i"é“ " ,();,MM limal e ;y?.’» ﬁzhy Wf% 4 B Exg“'t““miw bt
W“Iw,‘ fa xmﬁg: n m»pxs s R . e
e . il 5;4, ;t‘% s‘xxwmmw £k ‘m n;m,»;'nf#é&??“”“? o
el ssux«umm g s “):“"““““’Mﬂ‘“"“““‘ i,
mwustm,m i 4 g?f‘fm“l,h Aiyeeind Sl e
i mmsmsswmwm,mﬁwﬁs sfimm‘sﬁi““”"’""”‘"““““‘ oy i ”‘*‘"" -
ko vw o Mmu«sxx»\«}«mmm&sxih&x«,«mmwim;n,mm« Sl e
iy, xmmwww m\'.rmv’.,xf mm&J“ﬁ,’zzﬁf’iﬁf’if“”‘“’““a’“"“ i i wwwm:
A e it g Mv«‘w'm;«ssi?n‘?mmm “W e
it 'ﬁxxwmm‘h:mkm«,/Kv;;:: wwmx»xéf!x N
i e
EIZW"“‘S !A»Hm«s#”m s

o l&&v;u'm,r
e v
\m,w s,
iy
fn

> ot u Bkinstpig
i i
)

ffi

f,

,
e
:

g

il
il
ey i ’3“Wm‘n“smﬂmmswms G
"1(e “‘“"«“’W«* ety sy
i stmhmm M sl !
; . g
T B o xinxﬂ&;""’“”’ i nmm\ﬁ“wsw e fo?w B
i ’««»e,nm!wﬁ- s L«,s»(>>aLxsu(‘E«au‘(*,,,x,‘(s;@,,z;é;gwg< W e e o =
53(»_«»,9 B &Sug&i(;sa« LT o) &&“N(%mgmgs;;s,‘,‘wm“ A sum_ 3 ,r xw,'mm o
P S o ’
ey “’“w 4 ws I‘(L,Ju‘,f“‘ﬂ 'Qiﬂ«wﬁww
i ?¥‘ﬂ g
bt

* ki v"‘“!wmmx ey
m e
i ek e
i mﬂ, bt

: b ot
i 4

i T T
vy T

ML e

g

Programming

For positive values, the program runs as expected, but if you enter a negative value you won't
see the message displayed. This is because the message is displayed for a very short period
of time before another display (i.e.,

©) appears. Use a wait statement after the display
statement in line 1. This statement causes the program to pause long enough for you to see
the message. To change the program, press: ﬁ@@m Then press the (=] key until it

is positioned on the semicolon just before the gto statement. Press [==J and key in

Press D to store the new line at line 1. Then press O Here is a listing of the
completed program:

W

-m%e
i .
= ‘p‘k:,w««’*
o

Since the program is a continuous loop, press to stop the calculator. Then, to do another

and press O This clears out the calculator memory.

b
€

program key in

Commonly Used Flowchart Symbols

Meaning

Program beginning or end.

Program segment; usually one statement.

Decision block indicates that a decision for a
branch is made. Usually an if statement is used
for a decision.

‘ —> Flowlines indicate the program flow.

Connectors indicate that the lines going to or
from them are connected.

3-5

3-6

Programming

Syntax Conventions

The statements, functions, and operators explained in this chapter are all programmable.
Most of these instructions can also be used in calculator mode.

Statements can be programmed or executed. Operators and functions must be part of a
statement in order to be programmed. This means that operations, such as 10 + 32 or V63,

which can be executed from the keyboard, must be part of a statement in order to be prog-

rammed. Thus, 5Or £ : are valid statements.

The instructions explained throughout this manual use the following syntax conventions. A
complete list of syntax is near the back of the manual.

[] - items within square brackets are optional.
.1 1w - items in dot matrix must appear as shown.

- three dots indicate that the previous item can be duplicated.

Numeric Variables

The calculator uses two types of variables, numeric and string. Numeric data can be stored in
simples variables, array variables, and r-variables. As numeric variables are allocated, they
are initially assigned the value 0. Numeric variable elements each require 8 bytes* of memory.
String variables are covered in chapter 6.

Simple Variables

There can be 26 simple variables, named A through Z. A simple variable must appear in upper
case. Each simple variable can be assigned one value. For example:

Assigns the value 12 to A.
Prints the value of A on the printer.

Array Variables

There can be 26 arrays, named A through Z. Array names are followed by square brackets

which enclose the subscripts of the array (e.g., i

* A byte is the basic unit of data in the 9825. Eight bytes are required to store a number.

Programming

Before an array element can be used, the array must be declared in a dimension (dim)
statement. This reserves memory for the array and initializes all elements in the array to zero.
In the dimension statement, each dimension of an array can be specified either by specifying
the upper bound, in which case the lower bound is assumed to be one, or by specifying both
the lower and upper bounds. For example:

Reserves memory for the 20 elements of the
two-dimensional array A.

Reserves memory for the 20 elements of the
two-dimensional array P. (Lower and upper
bounds specified.)

An array can have any size and any number of dimensions within the limits of the memory size
and line length. The bounds must be between —32767 and 32767.

Anindividual element of an array is accessed by specifying the subscripts of the element. For
example:

4 is assigned to element 1,5,4,6 of array A.

3 is assigned to element —2,1 of array P.

Another Example:
Reserves memory for 100 elements of array Q.

Q[7,1] is assigned the value 3.

The value 5 is assigned to the simple variable
Q. There is no connection between the simple
variable Q and array Q[10,10].

Q[1,5] is assigned the value 2.

r-Variables

r-variables are specified by a lower case “r” followed by a value or expression. When an
r-variable is encountered, memory is reserved for all r-variables with smaller subscripts which
have not been allocated. As r-variables are allocated, they are assigned the value 0. Thus if
r10 is assigned a value, r0 through r9 are also automatically allocated and assigned the value
zero if they have not been previously allocated.

3-7

3-8 Programming

Examples:

4 is assigned to r-variable 0.

2 is assigned to r-variable 4. rO= 4, therefore
2 — r4. This is known as indirect storage.

Variable Allocation

Simple variables and r-variables are allocated when a statement containing either is exe-
cuted. Array variables must be allocated using a dimension statement.

Before a variable is allocated, three cases are checked:

1. Before a variable is allocated by the dimension statement, a check is made to see if it is
already allocated. If so, an error results and execution stops.

2. When a simple variable is referenced in any other statement, a similar check is made as
to whether it has been allocated. If not, it is allocated.

3. When an array element is referenced in any other statement, a similar check is made as
to whether the array has been dimensioned. If not, an error results.

Within one statement, variables are allocated in the same left-to-right order as they occur in
the statement.

Number Formats

Numbers can be displayed or printed in floating-point format (scientific notation) or in fixed-
point format. The calculator’s internal representation of numbers is unaffected by number
formats, therefore, accuracy is not changed.

1 is executed, the number format

When the calculator is turned on, is pressed, or :
is fixed 2 (fxd 2), and for very large numbers, the calculator temporarily prints and displays in
float 9(flt 9).

Programming

The Fixed Statement

[number of decimal places]

The fixed (fxd) statement sets the format for printing or displaying numbers. In fixed-point
format, the number of digits to appear to the right of the decimal point is specified. Fixed 0
through fixed 11 can be specified. ‘

i without

To set the number format from floating-point to the current fixed-point setting,
parameters is executed.

When a number of the form:
A=Nx10F
where: 1<sN<10,orN=0
is too large to fit in the fixed-point format, the number format temporarily reverts to the previ-
ously set floating-point (float 9 if no other floating-point format has been set) if:
D+E=14
where: D is the number of decimal places specified in the fixed statement.
E is the exponent of the number.

To illustrate the reversion to a previous float 9
setting, run this program »

If the value is entered when

pears in the display, this is printed #

3-9

3-10 Programming

For numbers too small to fit in the fixed-point format, zeros are printed or displayed for all

decimal places, with a minus sign if the number is negative. For example:

Here are some numbers and their output format if +:

Number

s executed:

Fixed 3 Output

18

—.000006
—2.7532

4.5678

5.3111e3
1234567891234.5

The Float Statement

(float 9 previously set)

1% [number of decimal places]

The float (flt) statement sets floating-point format which is scientific notation. When working

with very large or very small numbers, floating-point format is most convenient. Float O through
float 11 can be specified. To set the number format from fixed-point to the current floating-

point setting, ¢

. without parameters is executed.

A number output in floating-point format has the form:

—D.D...De—DD

e The left-most non-zero digit of a number is the first digit displayed. If the number is

negative, a minus sign precedes this digit; if the number is positive or zero, a space

precedes this digit.

e A decimal point follows the first digit; exceptin flt 0.

Programming 3-11

e Some digits may follow the decimal point; the number of digits is determined by the
specified floating-point format (e.g., in flt 5, five digits follow the decimal point).

e Then the character = appears, followed by a minus sign or space (for non-negative
exponents) and two digits. This is the exponent, representing a positive or negative
power of ten. The exponent indicates the direction and the number of places that the
decimal point would have to be moved to express the number in fixed-point format.

is executed:

Here are some numbers as they would appear if + % &

Number Float 2 QOutput

-3.2

271
26.377
.000004
2.482e33

Significant Digits

All numbers are represented internally with 12 significant digits regardless of the number

format being used. To illustrate this, execute

(

then press and note the display:

[)

The 13th and 14th digits, 8 and 9, are not stored and zeros are displayed for those digits.

 then key in the number:

m—icomoem)

Rounding

A number is rounded before being displayed or printed if there are more digits to the right of
the decimal point than the number format allows. The rounding is performed as follows: the
first excess digit on the right is checked. If its value is 5 or greater, the digit to the left is
incremented (rounded-up) by one; otherwise it is unchanged. The number remains un-
changed internally. For instance:

3-12 Programming

The Display Statement

.1z [any combination of text or expressions]

The display (dsp) statement displays numbers or text on the calculator display. Commas are

).

used to separate variables or text (e.g.,

Quotes are used to indicate text. To display quotes within text, it is necessary to press @
twice for each quote to be displayed. For example:

Type in:

Press: [\ J

Displayed lines longer than 32 characters can be viewed using the display control keys,

and ().

m-camsem)

Numbers and text which are displayed remain in the display until another display operation
(such as enter (ent) with a prompt) clears it.

The Print Statement

1% [any combination of text or expressions]

The print (prt) statement is used to print numbers or text on the calculator printer. For example:

If an expression is to be printed, such as:

the expression is evaluated and the equivalent value is printed (and also stored in X in this
case).

Programming 3-13

To print a quote within text press C @ twice for each quote to be printed. For example:

Type in:

Press: .

Commas are used to separate variables or text. For example:

m<comsm)

Type in:

Press: 6

When printing lines of text and values, the printout follows this format:

“ MM

b

e Text followed by a numeric is printed on the same line if it fits; otherwise the text is
printed and the number is printed on the next line.

e Each line of text separated by commas begins on a new line and folds over on succes-
sive lines if it is longer than 16 characters.

e Numerics separated by commas are printed one per line unless the format is flt 10 or fit
11 which requires two lines each.

When
the space statement.

is specified without parameters, no operation takes place. To space one line, use

The Enter Statement

[prompt =] variable [: [prompt :] variable...]

The enter (ent) statement is used to assign values to variables from the keyboard during a
program. The variable can be a simple variable, array variable, or anr-variable. For example:

P
i

st
P
il

T

5 “”‘

i
Nnmm
il

el
@ Hm s
e
B
R o ot

iz
£

e
R Savi it

When an enter statement is encountered in a program, key-in a number, variable (such as
andYress O

When many items are entered from the keyboard, it is often helpful to have a message called a

“prompt” displayed representing the variable being assigned a value. For instance:

J

J

3-14 Programming

If no prompt is given, the calculator uses the name of the variable as the prompt. For example:

)

i the calculator retains any

L

If a null quote field is given as a prompt, such as
previously displayed message, unless a print operation is between the display statement and
the enter statement. This is useful for variable prompts using the display statement. For
example:

)

You can ca!culate values from the keyboard while the program waits in the enter statement.

This is done simply by entering the calculation and pressing . If the value to be entered is

the result of pressing . press ‘ or [=J then press . Pressmg

before pressing = causes a default condition as |f . were pressed without entering a

immediately

m4comnm

value.
Complex lines can be entered as the response to an enter statement. For instance, run this
program:

When the display is:

enter a value for B. Then when the display is: [

Type in:

Then press . If the value that you entered for B is greater than 20, then is printed,

otherwise is printed.
I F\) is pressed without entering a value, the variable maintains its previous value and flag
13 is set. When a value is entered, flag 13 is cleared. See flags later in this chapter.

To terminate a program during an enter statement, press O The rest of the program line is

completed before the calculator stops.

Commands, such as =, are not allowed during an enter statement and cause

error 03.

Programming

The following example illustrates a unique case using the enter statement. Run the short
program:

Type in:

Press: C

Notice that the value of | when the enter statement is encountered is used, not the entered
value of |. To use the entered value of | as the subscript, use another enter statement. For the

)

above example, change line 2 to:

Even though you can have one enter statement that enters values for several variables, only

one value can be supplied at a time. For example:

type in a value for A when a % appears in the display and press (e, then do the same when

F appears in the display.

The Enter Print Statement

= [prompt =] variable [: [prompt :] variable...]

The enter print (enp) statement is the same as the enter statement except that prompts and the
entered values are printed and displayed as they are encountered.

For example, type in this short program to calculate the area of a circle:

Fooete
FEN]

]
|

3-15

3-16 Programming

The Space Statement

. [number of blank lines]

The space (spc) statement causes the printer to output the number of blank lines indicated.
The number of lines can be an expression with a range of 0 through 32767. If no parameter is
specified, one blank line is output.

Examples:
Space the number of lines specified by A + B.
Space 5 lines.

Space one line.

The Beep Statement

The beep statement causes the calculator to output a beep. For example, the calculator
normally beeps, displays

, and stops when the argument of the square root (i)
function is negative. In the following short program, the value entered for A is tested. If it is
negative, the calculator beeps and displays a message, but the program continues entering

values.

The Wait Statement

. . number of milliseconds

The wait statement causes a program to pause the specified number of milliseconds
(thousandths of a second). The wait statement is often used with display or enter statements to
display a message for a specified time. The number of milliseconds can be an expression. The
maximum wait is around 33 seconds, which is specified by the value 32767.

Programming 3-17

Since the wait statement takes time to be executed, small values in the wait statement are
actually longer than a millisecond. This becomes evident in a loop which is executed many
times.

Examples:

Pauses for 2 seconds.
Pauses for 2« milliseconds.

In the next example, a display statement is followed by an enter statement. To preserve the
first display for one second, the wait statement is used.

The first display remains one second before
the next display.

The Stop Statement

The stop (stp) statement stops program execution at the end of the line in which it is executed.

Pressing continues the program at the next program line. can also be used to
“step” through the program one line at a time. If any editing is performed after the program
stops, and cause the program to continue from line 0.

The stop statement can also be used for debugging. See the section on debugging state-
ments for details.

The End Statement

The end statement causes the program to stop like the stop statement. However, the end
statement resets the program line counter to line 0 and resets all subroutine return pointers
(see go sub statement). The end statement is usually put at the end of a program. The end
statement cannot be executed during an enter statement, nor in live keyboard mode.

3-18 Programming

Hierarchy

In a statement containing functions, arithmetic operations, relational operations, logical opera-
tions, imbedded assignments, or flag operations, there is an order in which the statement is
executed. This order is called the hierarchy, which is:

highest priority ~ functions, flag references, r-variables
1 (exponentiation)
implied muitiply

----- (unary minus)

¥

lowest priority

An expression is scanned from left to right. Each operator is compared to the operator on its
right. If the operator on the right has a higher priority, then that operator is compared to the
next operator on its right. This continues until an operator of equal or lower priority is encoun-
tered. The highest priority operation, or the first of the two equal operations, is performed.
Then any lower priority operations on the left are compared to the next operator to the right. If
parentheses are encountered, the expression within the parentheses is evaluated before the
left-to-right comparison continues. This comparison continues until the entire expression is
evaluated. In the following example, S1, Sz, Ss... indicate intermediate results:

implied multiplication
addition

evaluate parenthesis
exp function

implied multiplication
mod operator
subtraction

equality relation

final result

Programming

Operators

The four groups of mathematical or logical symbols, called operators, are: the assignment
operator, arithmetic operators, relational operators, and logical operators.

Assignment Operator

The assignment operator is used to assign values to variables. For example:

The value 1.4 is assigned to the variable A.

The value of B is assigned to the variabie A.

There are other ways to assign values to variables such as the enter (ent) statement or the load
file (Idf) statement.

To assign the same value to many variables, the assignment operator can be used as in this
example.

Multiple assignments can also take the form :: + 1 -+ (which is the same as &

- 7). This is called an imbedded assignment.

Arithmetic Operators

There are six arithmetic operators as follows:

Add (if unary, no operation) A+ Bor +A
----- Subtract (if unary, change sign) A—-Bor—-A
& Multiply A~B
Divide A/B
Exponentiate A®
Modulus ‘A mod B is the remainder of A/B when

A and B are integers. A mod B is the
same as A —int (A/B)+B.

3-19

3-20 Programming

When A is much larger than B, there is a chance that a value of 0 could be returned for

%2 This condition can be caught by examining the exponent of A/B when it is re-
presented in floating point notation with one digit to the left of the decimal point. If the expo-

nent is greater than 8, “ ikl results in a value of 0.

Besides the = symbol for multiplication, implied multiplication can be used. In the following
instances, implied multiplication takes place:

e Two variables together (like AB).

e A variable next to a number (like 5A).

e A variable or number next to a parenthesis [like 5(A + B)].
e A parenthesis next to a parenthesis [like (A + B) (X + Y)].

e A variable, number, or parenthesis preceding a function name (like 32 sinA).
For example:
A times B is stored in X.

5 times 5 is stored in X.
A times the sum B + C is stored in B.

5 times the absolute value of B.

Relational Operators

There are six relational operators as shown in the following table.

Symbols Meaning
Egual to.
Greater than.
Less than.
miQr Greater than or equal to (either form is acceptable).
@l Qr o Less than or equal to (either form is acceptable).
#or < ror s Not equal to (either form is acceptable).

The result of a relational operation is either a one (if the relation is true) or a zero (if it is false).
Thus if A is less than B, then the relational expression i< = =, is true and results in a value of
one. All comparisons are made on 12 significant digits, signs, and exponents.

Programming 3-21

The relational operators can be used in any statement which allows expressions as argu-
ments. For example:

Assignment statement. If A and B are equal, a 1 is
stored in C; otherwise, a 0 is stored in C.

If statement. If A is greater than B, then continue in the
line; but if A is less than or equal to B, go to the next
line.

Jump statement. If A is greater than 3, jump 1 line,
otherwise jump to the beginning of the line (jmp 0).

Print statement. If A is greater than B, the value of A is
printed. If A is less than B, then the value of B is
printed. If A equals B, then 0 is printed.

Logical Operators

The four logical operators, and, or, xor (exclusive or), and not are useful for evaluating Boo-
lean expressions. Any value other than zero (false) is evaluated as true. The result of a logical
operation is either zero or one.

Operation Syntax Truth Table

AND expression i expression A|lB|AandB
F|F 0
FIT 0
TIF 0
T|T 1

OR expression i expression A|B] AorB
FIF 0
FIT 1
T|F 1
Ty T 1

3-22 Programming

Operation Syntax Truth Table
Exclusive OR expression =i:: expression Al B | AxorB
FI|F 0
FIT 1
T|F 1
T|T 0
NOT it expression A | notA
F 1
0
For example:
Program: Printout:

Math Functions and Statements

The math functions and math statements are explained in this section.

Parentheses must enclose the argument of a function when a “+” or “—" sign precedes the

argument. In the examples, parentheses are shown only where they are required.

General Functions

Syntax Description Examples (fxd 5)
I expression Returns the square root of a non-negative + = 8.00000
expression. For negative expressions, see T4 =1.77245

the section on math errors.

Determines the absolute value of the ex-

pression.

= 330.10000

Programming

Syntax Description Examples (fxd 5)

@ expression The sign function returns a —1 for negative ittr = —1.00000
expressions, 0 if the expression equals 0, = 0.00000
and 1 for a positive expression. A% = 1.00000

iyl expression Returns the largest integer less than or equal "1z = 2.00000
to the expression. This is often referred to as “1 = —4.00000
the “floor” integer value of the expression.

e expression Gives the fractional part of a number. It is "1 =0.71800
defined by: expression — st expression 41 =0.76000

i fexpression: Returns the value of the argument rounded

rounding specification

. texpression:
number of digits:

1 list of expressions
and arrays:

== [list of expressions
and arrays

eevd [-] expression

(continued)

to the power-of-ten position indicated by the
rounding specification.

The digit round function rounds the argu-
ment to the number of digits specified. The
leftmost significant digit is digit number 1.

Returns the smallest value in the list. An en-
tire array can be specified by substituting an
asterisk for the array subscript list (such as

).

Returns the largest value in the list. An entire
array can be specified by substituting an as-
terisk for the array subscript list (such as

).

The random number function generates a
pseudo-random number greater than or
equal to 0 and less than 1. When the argu-
ment is positive, the starting seed is 7/180
(which is .0174532925200). This seed is in-
itialized when the calculator is turned on,

- = is executed, or (=) is pressed.
Each subsequent access to the rnd function

with a positive argument uses a seed based

on the previous result of the function.

= 127.38000
127.375 is rounded to the
nearest hundredth (1072)

= 73.06300

—70000.00000
' .+ =0.06000

= —3.00000

= 8.00000

erd L= 0.67822

3-23

3-24 Programming

Syntax Description Examples (fxd 5)

To specify a starting seed other than #/180,
use a negative argument. The fractional part
of the absolute value of the argument is used Note that the walit state-

as the seed. To obtain a good seed use a ment is used instead of

number less than 0 and greater than —1. The an assignment state-

o men initiali
more non-zero digits in the number, the bet- entto initialize the

starting seed. Line 1
ter. Last digits of 1, 3, 7, or 9 are preferable. ¢ !
generates a random

number based on .31317

instead of #/180.

Logarithmic and Exponential Functions

Syntax Description Examples (fxd 5)
expression The natural fogarithm function calculates the ni = 8.98732
logarithm (base e) of a positive valued ex- fns = —5.95224
pression.
expression The exponential function raises the constant, . =2.71828
naperian e, to the power of the computed = .04979

expression. The range of the argument is
approximately from -227.95 through

230.25.
expression The common logarithm function calculates = 2.48458
the logarithm (base 10) of a positive valued = —2.30980
expression.
 expression The ten-to-the-power function raises the SR = 500.00000
constant, 10, to the power of the computed © 0 .1 =0.00100

expression. The range of the argument is
approximately from —99 through 99.999.
This function executes faster than: it ex-

pression.

The math errors and default value associated with the log and In (natural log) functions are
explained in detail in the next section.

Programming 3-25

Trigonometric Functions and Statements

The angular units: degrees, radians, or grads, are set by statements explained in this section.
Degrees are automatically set when the calculator is switched on, s

is pressed.

=1 IS executed, or

This statement sets degrees for all calculations which involve
angles. A degree is 1/360th of a circle.

This statement sets radians for all calculations which involve
angles. There are 27 radians in a circle.

it This statement sets grads for all calculations which involve
angles. A grad is 1/400th of a circle.

itz This statement displays the current angular units.

Syntax Description Examples (fxd 5)

“: expression Determines the sine of the angle rep- ol = 070711
resented by the expression in the current : e e
angular units. = 0.50000

= —0.89101
i expression Determines the cosine of the angle rep- fend oo ST = 0.70711

resented by the expression in the current GdE o DT
angular units. = 0.86603

= 0.45399

L expression Determines the tangent of the angle rep- caee Lo = 1,00000

resented by the expression in the current

angular units. = 1.00000
= 1.00000
“rexpression Returns the principal value of the arcsine of demdocn L= 5313010
the expression in the current angular units. oo L =0.92730
The range of the argumentis — 1 through +1. R © = 59.03345

The range of the result is —#/2 to +#/2 (ra-
dians), —90 to +90 (degrees), or —100 to
(continued) +100 (grads).

3-26 Programming

Syntax Description Examples (fxd 5)

1L expression Returns the principal value of the arccosine LI e
of the expression in the current angular =113.57818
units. The range of the argument is —1 &
through +1. The range of the resultis O to 7 =., ! '982?’1
(radians). 0 to 180 (degrees), or 0 to 200 Sme e
(grads) = 126.19798

711 expression Calculates the principal value of the arctan- 87.13759
gent of the expression in the current angular 1.52084
units. The range of the resultis —@/2 to +7/2 “i = 96.81955

(radians), —90 to +90 (degrees), or —100 to
+100 (grads).

Math Errors

Errors 66 through 77 are displayed when a math error occurs. In this section, the default
values of math operations which result in an error are explained. Whenever a math error
occurs, flag 15 is set automatically. If you set flag 14, math operations which normally cause
an error to be displayed, result in a default value.

When printing, displaying, or storing a default value outside the storage range, the value is
converted to an appropriate value of £9.99999999999¢ 99.

Division by zero. The default value is +9.99999999999%¢ 511 if the dividend is

positive and —9.99999999999¢ 511 if the dividend is negative. For example:

W, v = —0.99999999999%¢e 511

A mod B with B equal to zero. The default value is 0. For example:

Square root of a negative number. The default value is V (abs (argument)). For
example:

Programming 3-27

Tangent of (nx#/2 radians);

Tangent of (nx90 degrees);

Tangent of (nx100 grads);

where n is an odd integer. The default value is 9.99999999999¢ 511 if n is
positive; and —9.99999388999%¢ 511 if n is negative. For example:

21 = —9.99999999999%¢ 511
9.99999999999%¢ 511
= 9.99999999999¢ 511

In or log of a negative number. The default is:
In (abs (argument)) or log (abs (argument))
respectively. For example:

L1 =5.70711
|1 = —3.00000

In or log of zerc. The default value is —9.99999999999e 511. For example:

2= —9.99999999999%¢ 511
1= —90.99999999999%¢ 511

asn or acs of a number less than —1 or greater than 1. The default value is
asn (sgn (argument)) or acs (sgn (argument))
respectively. For example (in degrees):

Negative base to a non-integer power. The default value is

(abs (base)) 1 (non-integer power) For example:

. The default value is 1.

)

Storage range overflow. The default value is 9.99999999999¢ 99 or
—9.99999999999¢ 99. For example:

Zero to the zero power (i -

= 4 A will equal 9.99999999999¢ 99.
= i B will equal —9.999999999939¢ 99.

‘Storage range underflow. The default value is zero. For example:

-+ A will equal O

3-28 Programming

Calculation range overflow. The default value is 9.99999999999%e 511 or
—0.99999999999¢ 511. For example:

9.99999999999%e 511
—9.99999999999¢ 511

Calculation range underflow. The default value is zero. For example:

Flags

Flags are programmable indicators that can have a value of one or zero. When a flag is set, its
value is one; when it is cleared, its value is zero. There are 16 flags, numbered 0 through 15.
The following flags have special meanings:

Flag 13 -is automatically set when o is pressed without entering data in an enter statement
or when G is pressed in an enter statement. Flag 13 is automatically cleared when
data is supplied in an enter statement.

Flag 14 -when flag 14 is set, the calculator ignores math errors such as division by zero and
supplies a default value shown in the preceding Math Errors list.

Flag 15 -is automatically set whenever a math error occurs, regardless of the setting of flag
14,

The Set Flag Statement

w4 % [flag numbers...]

The set flag (sfg) statement sets the value of the specified flags to one. The flag number can
be a value or an expression. If a non-integer flag number is specified, the value is rounded to
= is executed with no flag number specified, all flags (0 through 15) are set.

an integer. If =
For example:

Set flag 2.

Set the flag designated by A + 1.

Set flag 1 and the flag designated by X.

Programming

The Clear Flag Statement
o ¢ = [flag numbers ...]

The clear flag (cfg) statement clears the specified flags to zero. The flag number can be a
value or expression. If a non-integer flag number is specified, the value is rounded to an
integer. If 2:¥ =z is executed with no flag numbers specified, all flags (0 through 15) are cleared.
Examples:

Clear flag 14.

Clear the flag designated by the value of flag 2
(either flag one or flag zero will be cleared).

Clears all flags.

The Complement Flag Statement

o [flag numbers ...]

The complement flag (cmf) statement changes (toggles) the value of the flags specified. If a
set flag is complemented, its new value is zero. If a cleared flag is complemented, its new
value is one. A value or expression can be given for the flag number. If a non-integer flag
number is specified, the value is rounded to an integer. To complement flags 0 through 15,
o1 is executed without paramenters.

Examples:
Complement flag 1.

S oamd Me-d o Complement the flag designated by X—1.

L

Complement flags 3, 4, and 5.

3-29

3-30 Programming

The Flag Function

flag number

The flag (flg) function is used to check the value of a flag. The result of the flag function is zero
or one. One indicates a set flag; zero indicates a cleared flag.

Examples:

If flag 2 is set, jump 5 lines.

If flag 15 is set, 1—=A; if flag 15 is cleared,
0—A.

Branching Statements

Branching statements are used to alter the sequential flow of a program. Branching is used for
such operations as looping through a section of a program, executing a subroutine program,
and branching to different parts of a program based on a decision (if) statement. There are
three statements used for branching: the go to (gto) statement, the jump (jmp) statement,
and the go sub (gsb) statement.

The following three types of branching may be used for both go to and go sub statements:

).

Relative Branching - branch forward or backward in the program the specified number of

3).

Labelled Branching -branch to the indicated label. This type of branching is generally the

lines relative to the current line (such as =

most convenient to use since the programmer doesn't have to know line

numbers for a branch (such as =t

Line Renumbering

Line numbers are automatically renumbered when a program line is inserted or deleted. As
lines are inserted or deleted in a program, the line numbers of relative or absolute go to or go
sub statements are changed as required to reflect the insertion or deletion. The address in the
jump statement is not changed. The entire program is checked before any deletion is made. If
a line being deleted is the destination of a relative or absolute go to or go sub statement, an

mand .
An error message is not displayed when the line containing a label name in a gto statement is

deleted.

Programming 3-31

If a line becomes too long due to line renumbering, the line number for that line will appear
followed by a ¥ when the line is displayed or listed. For example:

Line 8 was stored with 73 characters.

Inserting aline at line 7 causes line 8 to be renumbered such that the branch is to line 100. The
line will appear as:

To view the entire line, delete an appropriate line to recover the original line numbering. The
fact that a line is too long to display or list does not affect the operation of the program when
the program is run.

More information on line renumbering is in the Program Debugging section.

Labels

Labels are characters within quotes located either at the beginning of a line, after a go to or go
sub statement, or after a run or continue command. Labels at the beginning of a line must be
followed by a colon.

Labels are used for branching and for remarks within a program. When used for branching,
the label in the go to or go sub statement is compared to the line labels in the program until a
match is found. Then, at the end of the line, a branch is made to the line containing the label.
The first time a branch is made to a label, the program is scanned beginning at line 0 until a
matching label is found. From then on, the branch is directly to the line with that label. When
comparing labels for branching, a comparison is made on all characters in the label, including
blanks.

Labels are often used to make remarks in a program for documentation purposes.
For example:

Note that a colon must follow a label even if nothing else is in the line.

The Go To Statement

The go to (gto) statement causes program control to transfer to the location indicated. When a
line contains more than one go to statement, only the last one encountered is executed.

3-32 Programming

Absolute Go To

Lo line number

An absolute go to statement is used to branch to the indicated line. The line number must be
an integer (such as 5 or 13).

When an absolute or labelled go to statement is executed from the keyboard in calculator
mode, the program line counter is set to the specified line number. To view the line, press the

() key.

Relative Go To
@i+ number of lines
Lo number of lines

Arelative go to statementis used to branch forward (+) or backward (—) the specified number
of lines, relative to the current line. The number of lines must be an integer.

Examples:
AEEoEta 4 Go forward 1 line.
21e gsvo -% Go back 3 lines.
::? +’i‘j Go to the beginning of the current line.
G AE T
Labelled Go To

Alabelled go to statement is used to branch to the line with the indicated label (see section on

labels). This is the most convenient type of branching since no line numbers have to be
considered.

Programming

Example:

Go to the line labelled by “Avg.”.

When a labelled go to statement is executed from the keyboard in calculator mode, the
program line counter is set to the specified line number. To view the line, press the (+] key.

Multiple go to statements in a line are useful for N-way branching when used with an if
statement. N-way branching is explained later.

The Jump Statement

g number of lines

The jump (jmp) statement allows branching from the current line by the number of lines
specified. This statement is similar to the relative go to statement except that the number of
lines can be an expression. If the number of lines is positive, the branch is forward in the
program. If the number of lines is zero, the branch is to the beginning of the current line. If the
number of lines is negative, the branch is backward in the program. If the number of lines is
not an integer, then it is rounded to an integer.

The go to statement executes faster than the jump statement. The jump statement can only be
at the end of a line, otherwise error 07 is displayed when you try to store or execute the line.

Examples:

vk & 5 S Jump forward 10 lines.

ey odme A Jump the number of lines designated by the
value of A.

Jump forward 2 lines if Z=2; otherwise jump to

i
I
T

the beginning of the current line.

..........

A eoe F immlE+ Increment B and jump to the next line if B is
2@ greater than 20; otherwise jump to the begin-
ning of the current line.

3-33

3-34 Programming

The Go To Subroutine and Return Statements

The go to subroutine (gsb) statement allows branching to subroutine portions of a program.
Subroutines are useful when the same routine will be executed many times and called from
different places in the program. A return pointer is set up when the go sub statement is
executed. This pointer points to the next line after the line containing the go sub statement.
The return (ret) statement returns the program execution to the pointer location. The return
statement is the last statement executed in the subroutine and must be the last statement in a
line. The depth of subroutine nesting is limited only by the amount of available memory. Each
subroutine return pointer requires eight bytes of memory. Subroutines should be entered only
by a gsb statement and should be exited only by a ret statement.

When a line contains more than one go sub statement, only the last one encountered is
executed. There are three types of go sub statements: absolute, relative, and labelled.

Absolute Go Sub

sy line number

An absolute go sub statement is used to go to the subroutine at the specified line number. The
line number must be an integer.

Example:

Go to the subroutine at line 15.

b End subroutine with return statement (program
returns to line 8).

Relative Go Sub

: 4+ number of lines

- number of lines

A relative go sub statement provides forward (+) or backward (—) subroutine branching the
specified number of lines, relative to the current line number. The number of lines must be an
integer.

Programming 3-35

Examples:
Go to the subroutine at line 12.

Go to the subroutine at line 5.

Labelled Go Sub

label

A labelled go sub statement is used to branch to the subroutine at the indicated label. This is
the most convenient form of subroutine branching since no line numbers need to be consi-
dered.

Example:

Go to the subroutine at the line labelled by
“sub1”.

Multiple go sub statements in a line are useful for N-way branching when used with the if
statement. N-way branching is explained later.

Calculated Gosub Branching

By using the jump statement and the go sub statement together, calculated branching to
subroutines is possible. This form of subroutine branching is called the calculated go sub and
has the form:

> dummy location & expression

The dummy location can be a line number, + or — a number of lines, or a label, but the
calculator branches to the subroutine designated by the computed jump expression. For
example;

If a 3 is entered for N, the program branches to the subroutine at line 4.

3-836 Programming

The If Statement

i f expression

The if statement is used to branch based on a logical decision. When an if statement is
encountered, the expression following it is evaluated. If the computed expression is zero
(false), program control resumes at the next program line (unless the preceding statement
was a go to or go sub statement as explained later under N-Way Branching). If the computed
expression is any other value, it is considered true, and the program continues in the same
line. The if statement is most often used with expressions containing relational operators or
flags.

Example:

b Enter a value for A and B.

If A=B, go to “one”; otherwise go to ‘zero™.

At label “one”, display =5 then stop.

Tigew At label “zero”, display i then end the

program.

Whenever A and B are equal, :is displayed. All other times, ¢ ‘is displayed.
The if statement can be used with other statements besides the go to statement used in the

above example. The previous example could be shortened to:

Note that no go to statements are used.

Programming

N-Way Branching

The if statement used with a go to or go sub statement makes it possible to branch to any of
several locations. This type of branching is referred to as n-way branching, and has the
following forms:

or

If the first if statement is false, then the branch is determined by the first go to or go sub
statement. If the first if statement is true, the second go to or go sub statement determines the
branch. Go to and go sub statements can be mixed in the same line.

When a line contains more than one go to or go sub statement, only the last one encountered
is used. An if statement whose expression is zero can abort execution of the remainder of a
line (before subsequent go to or go sub statements are encountered).

Example:

If X is less than or equal to 30, the program branches to line 24. If X is greater than 30 and less
than or equal to 40, the branch is to line 32. If X is greater than 40, the branch is to the line
labelled “max’”.

The Dimension Statement

ciiiitem [sitems L]

item may be: simple variable
array variable idimension [: dimension: ...}}

The dimension (dim) statement reserves memory for simple and array variables, and initializes
the indicated variables to zero. r-variables can not be dimensioned in a dimension statement.

3-37

3-38 Programming

In the dimension statement, the dimensions of an array can be specified by expressions. For
example:

Variables are used to specify dimensions.

Variables are allocated in the order that they appear. If a variable is allocated already, an error
results. All the variables dimensioned in any one dimension statement are stored in a contigu-
ous block of memory. This is important when recording data.

Dimension statements may appear anywhere in a program but any dimension statement can
only be executed once during a program. The number of dimension statements is limited by
memory size. The number of dimensions and the size of the dimensions of an array is limited
only by memory size and line length. For example:

Reserves 128 array elements.

Reserves 1000 array elements.

Specifying Bounds for Dimensions

A dimension may be specified by giving lower and upper bounds. The lower bound must be
specified before the upper bound. The two are separated by a colon. The bounds must be in
the range from —32767 through 32767. For example:

Reserves 12 array elements.

Reserves 12 array elements.

The elements of array S are referenced as:

S[-3,4] S[-3,5] S[-3,6]
S[-2,4] S[-2,5] 9S[-2,6]
S[—1,4] S[-1,5] S[-1,6]
S[0,4] S[0,5] S[0,6]

If a lower bound is not specified, as in X[4,3], it is assumed to be 1, the same as X[1:4,1:3].

Programming 3-39

The Clear Simple Variables Statement

The clear simple variables {csv) statement clears any allocated simple variables to zero. The
clear simple variables statement does not de-allocate variables. Therefore, an error results
when the following line is executed:

Not allowed. Cannot allocate A twice.

The List Statement

t. special function key

The list statement is used to obtain a printed listing of a stored program, section of a program,
or special function keys. If no parameter follows the list statement, the entire program is listed.
If one line number is specified, the program is listed from that line to the end. If two line
numbers are specified, the program segment between the two line numbers is listed. To list all

of the special function keys, execute i izt i (for list keys). When list is followed by pressing
an individual special function key, then only that key is listed (this is not programmable). The

list statement must be the last statement in a line.

Examples:

Lists the entire program.

List lines 10 through 15.
Listline 4.

List the special function keys.

List special function key 10 (not programma-
ble).

At the end of a listing, a checksum is printed. This checksum is useful for detecting inter-
changed or omitted lines and characters. Any difference in the programs generates a different
checksum. In the following two programs, only the characters % in line 1 are interchanged.
Note that the checksums are different. There is no change in checksum from machine to
machine, with different memory sizes, nor with different ROMs.

3-40 Programming

Different /

Checksums

Used and Remaining Memory

After a list operation, two numbers are displayed. The first number is the total length of the
program in bytes*. This number doesn’t include variables, subroutine return pointers, etc. The
second number is the unused memory in bytes. For example:

r .

Program Length Unused Memory

(in bytes)

*A byte is the basic unit of data in the 9825. 8 bits make up one byte. 8 bytes are reqguired to store a number.

Programming 3-41

Program Debugging

Debugging is the process of refining a program by editing, correcting, and updating. Like
programming, it is a creative process. Many operations are involved such as deleting and
inserting lines and changing, inserting, and deleting characters. Selective tracing and selec-
tive stopping are useful for locating lines which require changes. is useful for going
through a program one line at a time. This chapter explains some of the steps in editing a
program.

Finding the Problem

The first step in debugging is to find the lines which require changes. This can be done in
several ways. One way is to step through a program by pressing once for each line to be
executed. Then check the results after each executed program line.

Another way is to use the trace, stop, and normal statements. When program lines are traced,
the line number, and variables and flags which are assigned values are printed. This allows
you to monitor program activity in individual program lines. Using the stop statement, the
program can be stopped whenever a specified program line is encountered. The normal
statement is used to terminate tracing and stopping. Stop, trace,and normal statements are
explained later.

Fixing the Problem
The next step in debugging is fixing the problem. In many cases, this is as simple as changing

one character. Fixing the problem could, however, require rewriting many program lines.

To modify characters within a line, fetch the line by pressing the key followed by the line
. The line will appear in the display.

Comxi

number of the line requiring the change. Then press

g

Next press either (=], if the change is closer to the end of the display, or (»), if the change is
closer to the front. Once a flashing cursor is over the location needing correction, you can
either insert characters, delete characters, or write over the existing characters. To insert

3-42 Programming

To modify lines within a program, use the key or the () and _+) keys to bring the line
into the display. To delete the line, press the line >« key.

If aline being deleted has a line number referenced by a go to or go sub statement, an error 36
will occur. Either execute the delete command with the optional asterisk (%) parameter or
adjust the line reference in the go to or go sub statement accessing that line. In the following
example, line 25 is to be deleted; but line 25 is referenced from line 27. Two alternatives are
shown.

Program section:

Alternative 1:

Type in:

i omme|

Press: b Deletes line 25 only. The go to statementin line

27 still addresses line 25.

Alternative 2:

Change line 27 to:

Then fetch line 25 and press line ==,
or execute

Toinsert a line, fetch the line that the inserted line is to precede. Then type the new line into the
display and press the line key to store it. All the lines from the fetched line on are
automatically renumbered (incremented by one). When a line is inserted, the line references
of go to or go sub statements are incremented to reflect the new line numbering. If the line
being inserted contains an absolute go to or go sub statement, it is assumed that the line
numbers reference the lines before they are renumbered. Thus, if a line inserted before line 30

contains a
to line 46.)

statement, it will be renumbered to = . (The old line 45 is renumbered

In this example, a line is inserted between lines
14 and 15 »

Programming 3-43

First, fetch line 15, then type the line to be in-

serted into the display »

Then press the line key. The display will
be »

To see where the line was inserted, exe-

cute:

Note that the line number in the go to statement in line 16 is incremented since old line 19 is
now line 20.

The branching address of the jump statement is not affected by adding or deleting lines in a

program.

The Debugging Statements

The trace, stop, and normal statements are used for debugging programs. The three state-
ments have dual roles in that their action depends upon whether any parameters are
specified.

To effectively use the trace, stop, and normal statements, the internal operation should be
understood. There is one master flag which enables and disables overall tracing and stop-
ping. In addition, each line has two flags. The trace flag enables and disables tracing of the

line. The stop flag enables and disables selective stopping at aline. These flags are unrelated
to flags O through 15 explained earlier in this chapter.

3-44 Programming

The Trace Statement

. ¢ [beginning line number [: ending line number]]

The trace (trc) statement sets the master trace flag. If line numbers are specified in the trace
statement, then the individual line trace flags are set on the designated lines. One line number
specifies that line only and two line numbers specify the block of lines from the beginning line
number through the ending line number.

During the execution of the program, a specific line is traced if both the master trace flag and
the individual line trace flags are set. When a line is traced, the number of the line is printed as
well as information describing any variable assignments and flag operations (involving flags 0
through 15).

The Stop Statement

=% = beginning line number [= ending line number]

The stop (stp) statement with line numbers sets the master trace flag and stop flags on the
designated lines.

Before each program line is executed, the stop fiag for that line is checked. If this flag and the
master trace flag are set, the program is stopped before the line is executed. The number of
the current program line is displayed when the program is stopped. Execution of the program

The Normal Statement
-2+ [beginning line number [= ending line number]]

The normal (nor) statement clears the trace and stop flags of the lines specified by the line
numbers. If no line numbers are specified, the normal statement clears the master trace flag.

The use of a master trace flag in addition to individual line trace and stop flags makes it easy to
enable or disable selective tracing or stopping of parts of a program. This process is shown in
the following example.

Programming 3-45

A 100 line program contains three sections in which critical operations are performed. These
sections can be traced by executing the following statements:

The program is run and the tracing printout indicates that line 45 contains an error. The line is
modified and 7+ is executed to clear the master trace flag. The program is again run, but this
time the assignments are not printed. At the conclusion of the program it becomes obvious
that the program still contains an error. The three critical sections of the program are again
traced by executing .+ This sets the master trace flag so that the lines 5-15, 40-50, and
70-85 are traced (the trace bits are still set on these lines). After the program is totally

debugged, the individual line trace flags are cleared by executing i

The individual line trace and stop flags are not normally stored on the cartridge when a
program is recorded by the record file statement. These flags can be recorded on the tape
cartridge along with the program by including the optional debug (“DB”) parameter in the
record file statement. The master trace flag is not recorded. To have the program automati-
cally trace the lines when the program is loaded back into the calculator, put trc in line 0 to set
the master flag.

3-46 Programming

Programming Hints

There are usually several ways to write a program or section of a program to perform a specific
job, and the programmer is often faced with the choice of which of several methods to use.
Usually the goal is to save program space and execution time and at the same time maintain
readability. However, these goals are sometimes conflicting and the programmer must decide
which is the overriding concern.

This appendix is not intended to discuss programming techniques in general but to describe a
collection of hints for the programmer who wishes to save space or time. While by no means
complete, this list describes some of the trade-offs which are “machine dependent” and
therefore not necessarily obvious.

In most cases, the time savings are small and are not observable unless the statement is
executed thousands of times. The space savings usually only amount to a few bytes. To check

the amount of space used by a statement, execute .

Method Method
Requiring With
Less Faster
Program | Execution
Method A Method B Storage Time
Simple Variables r-variables A
r-variables one-dimensional array Same A
variables
Multiple statements per One statement per line A A
line
gto +5 gto 5 Same Same
gto =5 gto 5 ‘Same Same
gto "5 (one ortwo char-| gto 5 Same Same
acter label)
gto +5 jmp 5 (Note 1) B A
VX X1.5 A A
XX | X12 (Note 2) B A L Same

Programming 3-47

T T Method T Method
Requiring With
Less Faster
Program Execution

Method A Method B Storage Time
implied multiply explicit multiply Same Same
™ 3.14159... A A
if flg2=1 if flg 2 B B
if flg2=0 if not flg 2 B B
if A#0 if A B B
if (A<B)or (B<C) if (A<B) + (B<C) Same A
if (A<B) and (B<C) if (A<B) » (B<C) Same A
J+5-K; K-3-L (J+5—-K)—-3—L B B
J+1-J; if J<5 if (J+1—=J)<5 B B
Specify lower bounds for | Use default lower bounds. B Same
array dimensions.
Use simple variabie asa | flag (Note 3) B
flag (as 1—=A).
Using both tracks alter- Using one track at a time, Same A
nately. sequentially.

Note 1: For computed branching, only jump statement can be used.
Note 2: X1Yis done by repeated multiplication if Y is an integer.

Note 3: If only one testis made, the flag method takes less room. If two tests are made, both methods

are the same. For more than two tests, the simple variable method takes less room.

3-48 Programming

Notes

Advanced Programming 4-1\

Chapter 4
Table of Contents

For/Next Loops (for, next) 4-3
SUDPIOGIAMS o 4-10
Subroutines (Cll, Tet)o 4-10
Passing Parameters 4-12
FUNCHONS 4-13
P-nUMDErS . 4-16
Split and Integer Precision Storage 4-20
Split Precision Storage (fts, stf) 4-20
Integer Precision Storage (fti, itf) 4-26
SUMIMIATY e 4-30
Cross Reference Statement (xref) 4-32

=,

4-2 Advanced Programming

Notes

Chapter 4

Advanced Programming

The Advanced Programming statements and functions enables you to —
e Use for/next loops to repeat sections of a program
e Pass parameters to subprograms including subroutines and functions.
¢ Store numbers in split and integer precision formats to conserve memory.
e Generate a list of the variables used in a program and the line numbers in which they

occur using the cross reference statement.

Advanced Programming (AP) is available in a plug-in ROM card for the 9825A and S Comput-
ers. The ROM card uses four bytes of read/write memory. AP is a permenent part of the 9825B
Computer.

For/Next Loops

The # <+ and % statements enable you to repeat a group of statements within a program
as many times as necessary.

rs 2t same simple variable

The + =+ and % statements, including the statements between them, form a loop within

aprogram. The + :::" statement defines the beginning of the loop and the number of times the
loop is to be performed. The variable that follows the ¢ =+ and 2% statements can be
any one of the simple variables A through Z.

The initial, final and step size values can be expressions. If the step size value is not specified,
the default value is 1.

4-3

4-4 Advanced Programming

Here’s an example of a for/next loop—

i
i w!,, i
.

naiE

B

S
S
i

This for/next loop would be executed five times - when | = 1,2,3,4 and 5. Each time the
statement is executed, the value of | is incremented by one, the default step size value.
When the value of | exceeds the final value (when | = 6)* the loop is finished and the
program continues at the statement following the

statement.

The advantages of using for/next looping instead of an statement are shown in the follow-
ing examples where the numbers 1 through 10000 are displayed in succession.

statement for/next loop

'x, e e o e e | Fd , g ot wnx S A M e)
[l R © i i prE e e g i i R AN
5 w«” qxu«m» -t ; e i, ik % t* s oy
i 252("’ i i “'1,,.., A e i
S "“"”“ i i F A 45 vt L RN
i e 1‘ xR : A&,‘ﬁfxtv w.,,m i ,w;(« e o xwv» vs!“ww
o e "’m! '5 3" e ; i ,M il
o “":f & = s Sl
; i F'! Ui B e g, L s

Flrd M,x»x’;\‘)g w. i iy ot

o
% i

e

e i
s mm*x,nf! i

i
Bt

i

i

. n,m i
R

The program that uses the for/next loop is easier to key in, takes less calculator memory (40

bytes) and is executed faster (25 seconds). With the
bytes of memory and is executed in 32 seconds.

statement, the program uses 48

The initial value of the variable assigned in the for/next loop does not have to be 1. The
following example totals the integers, 90 through 100, and prints the total (1045).

R R o i un i) i i e g A o T
«cmwssmu»c,m iR il ke s g e m S indol,
3 ,L,,,&u“m T Gy m ;gsg,w i e i AEURE i A u o s
e *“‘“% Pl e e imiaileg x::w et e
WM” mw“ o '1 i e g “ ‘,..ﬁ,, v, w TG ,x,,,,@;sw“irs lm wmws b
pet *:ir‘{" i ML ;‘% S e o e TR SR B
L o i i i s i g e
""‘ ,‘ﬂ e g (’”‘”5“ e ‘,‘,“" b e ;f‘ék?fix?«iw?m» mww’> Lf”‘f««mm i
oo xmy:,;;;‘ e o e et o e e x",,WWxx,ﬂmmw;wmmww
El . Sy “‘W‘, kit B
Rl mw s : i e g ¢ s
,xxx!x,vwmwsp‘xm! a o attas
;L&n u;,wmt« i s w{wxss
i L e i
I . i s i
il i ,wrssmms sl
eyt it s i b
ki i !‘s i G ':s“sismwiswgs b
g (-ww-s b e o i
P f mwlngm‘ M?xxw i i mmvw i
iR e e m;ﬁ“ w)éﬂ i ;w,;»;wm,»
s g R S e) e i ;g e
i *§!§s5 g, ’!sgé’, »‘?%5 s ;L n ki Heii wm;
sy 4 i o b B G B
Y sug!,s*»,w G e wsxvmmmug b
e »&'],< mm s;ﬁ.’ e msm,W‘w‘*xx»*t; i xnmuw it xmxssxmsm!‘*xv; i
pe «,;n “w;wsss«Uuwwm,myx sm;«xc G e i G Ty
uw,,m,;axy i Rt e m,m%W>s;mmmm‘,w,r it
i ;w i gsvgw“ i thxw“ pn&whqi?siii?xx“!s;mx&!&wm RO PR SO
4 *r it i wj'»»lm g R PR S
,vix!zm«vug:.h R S e
3o B e
“?\ R 0 T i St X;'s;’rmxww’m“ i

This is an often overlooked aspect of for/next ioops and is covered on the next page.

Advanced Programming 4-5

“statement. The variables B

The next example illustrates that variables can be used in the

and C are assigned values in the enter statement in line 1 and are used in the statement

in line 3.

i
i

" " o
m;q;gum, . ‘,k),‘a«w e o iy

i 'ww,,, i ‘ i
% :

dim
S

i W“ «..
il

i
;ul?:”* -

;:sm.,
i o
. ;‘,”5’1)

S
‘:“m
. mu‘
e S; “;&h:n;“
“ iy it
S
i e
E ::@M;&'”*“ Hadnay
e ;w,)ﬁfﬁssmn
i

ol s
L k?“"
E “
e
4

i

IfB = 1and C = 3, thetotalof1,2and 3 (6)is printed. fB = 55andC 8.5, the total of
5.5, 6.5, 7.5 and 8.5 (28) is printed. In either case, the value of | is incremented by one after
each loop. If the value of B is greater than the value of C, the loop is not executed and the

program continues at the first statement following
ment in line 6.

in this example the print state-

The following example illustrates an often overlooked aspect of for/next looping. After each

loop is performed, the statement increments the value of | by 1. Then the incremented

value is compared with the final value. If the incremented value is not greater than the final
value, the loop is repeated. When the incremented value is greater than the final value (when |

= 11) the loop is no longer repeated and the statement following the statement

) is executed.* Although the final loop is performed when | = 10, the last incremented
value for | is 11 and the calculator retains this as the value of I.

S e) s e o S B i i el e e
P,wwm:fg«sx., i e g T mfw‘g ..:»»“*,smmn ! e umm« m;“w i ‘»gm“ Sial n,,?“‘;Kxxc.x‘,:,,)“ﬁ!m‘),f,““%“‘ ‘!xcx §°~ e TP‘-‘ i
A gl?a“»w,:wzxﬁ G R B S SEsERa EE L b e
S!ibm”; n‘&xm iﬁvm m’ﬂsii ’“%(i i i ﬁxx xw; ‘“m!!‘mm’ R m::y 9;4) by 42“’ !!bmx: “”‘i"ﬂn“‘“‘ ’“;v hm““‘%kxx i M i!’mx m‘”)y;"f“ i "’M»x ‘&"H A
q?m‘ »:‘”“x:?x%’}‘v <,‘ n i - g“&w *Mx,x,‘ ’w;“ s”" m,:x,, w,, ’M, o !:ms‘,;?“" l':m i mmw ’:M :{,n,,,sk‘x‘?ﬂzikzﬁxﬁx(,,,’mﬂx :wa(x;x ;;;ixlpﬁaq‘:m‘] EM :»,)stm Exf."‘"‘*
i e Eo o i g e st B g SO g L i - <
mwﬁ“’?k,*ﬁ “flr: g ‘ F:“‘:n<s""”‘ ey xnf,f’:“&x e miéﬂ‘?gswsgyih,“*:wii?‘”"nm:‘ il o Wi b s,,""wii,}‘*m“‘"”ﬁ“‘"‘*« “:?’?““"":“ngq wx“r"?%‘“w"“‘.{e g
Ty o, i o g 08 g Ky g e P "o »,M s ol o
Sl e G oy kgt o i m,, m’ i 8 Koy i ey Py g sty g i, «‘
i S e 'u»»,x Nx!m,‘ “M e L8 "*“nu,u m,mf&ssm,» i el iy i taames i oo g iy ‘*?“xm;»"“‘
mm,"ﬁm,m“'*.m,,-;zjjwm R ~3w;;,f§ﬂk“,7§, o] «}m:yumw i o m’“’““;nf i Ko “snm?ﬂ’w St ;‘;”"Z‘«m;x“ ”'1« loees g
poeniton gt m,’ I A T it X;” «m'i e ““ ‘« 0 i ;swm{“ 6 Bt Wy A g
i mx,w“,;;mf;?;z.x,g i“,,w e R R S AL e s s
AR A S g ’aw,,,,‘#wm,, g mww; ’mxx,m‘, ”w;;.,m‘“a*mw o L AR «M{imm,,,“ ““”ss)xw‘“’wm,f""“xxsx,,{;‘*m i i e
ik, v:,xm‘ M oo G R T . L""““«“mw“““mnm. e R B(o e e
s oM *Q(rmigt,gmauzzw «vlgl""‘““sm?«*"‘Ww?ih,‘;‘w=m££§"“""xs;33§"*“mm i N,,w?m}“mmiéé’ i s méf:,ﬁ;w»x;fff(,(m,,‘ X m“';;vaw#xxr,m&“m«m,w»
,MM,WWM.M,K,“,,;jfg;‘;«ww,‘:x e i e s e um;,,)“W«xxm,x,,"’Wmmm73!&;“,,':'4‘&-,,, i
e igﬁ,,,,g s s . « S e T B, G S
e e e S L s T B o
i ««; it ’“”El“"q *SF‘ 211’ s e e «Sf u P vy f:wj‘vmx, e ey o ngg» m,,"*m ,’.‘:1;*; k,,,«gw,”g« x-& “«,:ﬁ‘:*"u i
I R DI A A e hxyg,mm’:;““mm:;;“'i"IH 2.:;§««q¢“' >m,;m:(‘z“mx,m;“‘:‘mm;‘“Wm ‘w«! »«m;;;;ymx_‘& “’»;*v.‘._ “i;f;“xm,;
Ml LT S e i It it e B
i i s . e bty B £ it W B A
) A
PR i % «M,m"“w m. rmn,, i g Wy «.«,“un’ w‘“
e el e ey o e
e PR B R
e *nm, s m,, x::;'*'m, b
g R s e) g
St 2 i i u«,,,, i x.k i e vty g, s m.. «um,
wm ST wm,M, ::Hmu i g T «mmw o ;Am =i
4 #e . Ay P B, g g ‘41 !,, -v»u
i : p £y

B i e :,_a“m i

gl B e :««s,(g e g e ,,g «; .,“)«w;m”’" e
s S ‘,, ux‘ ns_,,j;gé"

e R T ks, HEEED
e i . u»«m('”w Wi e "”mw» ‘nv«w i o
a8 S B L T e i L
i A) B “‘»xx i L"«ziyxnuj‘mg:i«,,. P i):&;i“m o m;;;;:'t‘m; i
G i s «w: ser e n,* e w;g i

W o ; . . L S deed o SRR
R R e i i ool g IR ‘%as., -,

ing
ced Programm
Advan

4-6

In this
ays.
stoarr
. n Value
to assig
used
tloop can be igned values.
/nex assi
the for 4] are
how h Al
gram shows les A[1] throug
xt pro ariable
The ne array v
le, the

s
uwm«ﬂix‘«x(a TN ;
o £ wmg;
g i %
g e i
e e o ¥
ffl«wmh s»[‘““"‘ gl ?;ﬁ}"‘f’”’? “,,353,?5’
L Ndlvwm ’;éim wx& - iy
b It ““““‘ s;‘ X""mvww :x; x«w(i,
R i ey o
v ,52‘,““""’” mn iy s
««!Mhm ’ ko .
e gLl e] Wit
G :ixk;xxfa’un&ex:uyx“t‘i%:’;““‘-‘? i
. i wa» s o ST 5
g L i i
g o ey "‘”
w;v*w«m» 3 oy b it A i
s ;(s.x_i,xs;%‘zt;“(f e o i i o e
. ini ol Zpr i ; i ‘:f,;
: . e i S il i Vi
i ‘gl v i 5 i i i il 73?«‘07,,,& :
i ;mm S bzm,m s " ww i
s — L s
B R Seali x«nsi i mmw i - ,5«47,»’ e
it o Y 5:&*« i G u;x,x‘ s G e
““x«(!“«(!xxk T i o wm il i, “M
T ; it i . o ;),m« i o
LA mxi,,i, e S S s “
Nxx xiiw i Fie
L, .
" -“q i o
el ;
i S
el 5 ’“XWXNZMV
. \mmmﬁ i
i S e
el e
T e S
n{%ﬁn o
x;xxu& s m,,%,.,z n
i 7 !mn»s!‘uu o
o ﬁinﬁf“ i

o

i
oot g
i

1

g
i

i

i g

Exx
e
e
‘u 'ix
o

i
o Al
e “ﬁfduﬁmss im
i R
o 1
ot i Mé’k'x
i P «‘V)xxxmxmu
el L o
mfﬁ,fif ’xxm«m;,mjii“‘z‘ L
: umm .f«yﬁi"’ iy "”*”!“i i
g i ¥ : «,;(,hm,, ¥4 i ,,,"W smwm
. \Mm«:sw;‘ ’ m; " :Ams ,;ww,),,m,,é,,m*x m,, i “t;,
5 @ R g o g o uxx o
k. i Wm» : !mmm o iingssz‘ to mxmxm }g ’“ Wx" i
L il e s i M,L, i
i 8 i iaxmwm m,xs(’,’lmm o S .
MW S B ;;ﬁj‘j“‘“ﬂ e . [
i i “:f i ’imlmmx i i ‘;x hvxzmgg;kzm o s q;:, (_«u”\m
St i) L6
Jiip S . lggtwm’:m»M»"«'“w T
g iy, S B umw LS
;’m i i o e o b o i,
ol Exif’}“',&‘i" et i mg:“m» s,
E f o ”:;f*"i, b
s i, f R
b i k
g g
i e
il

h
for eac
one
of 26 (ing the
depth running
to a fore
r Up r. Be
anothe nothe
d inside one not overlap a
sted or locate one loop can s
ne ver, ing [r
an be Howe press
loops ¢ h Z). de by
/next throug int all mo
FOrple variable A set the print a
sim grams,
. g pro
followin

Correct Nesting

e
s
i -
s A
. ,“c"«w ',,,W»
, . . S RO
. Sy S
. . T “ e “ ;
‘t‘w‘ i B . e TN
SN L [s @
T . S i ; Sy ;
§ ot n oA g
Fhef s £y w,,,,,,(5 [
Y § el E i Wi Vi PR * §
o b i s L e o ey SR
N a0 >!- . M * i g, e, R RRITE A e nt o
o ¥ « m,u e ; oy iy e S
g "‘?s ok LA S i . g e
* e v L LI Sy <y ;;w o Nl
n.m R . . 5 il N, g
g . i iy, Wi i Lo i ity g g
et e I ,H i
oy o < i fpacnlEs
X s ‘»* vm o B, S i
: R e B
&l "H
e, k8
SR
R
2

e
ey
gt
gy

MO

R o

e
i
oy e
b : i
i N e il
i o »ww
il R S
v'iim'ﬁ"liil,ii’»‘"“‘*‘“»»««mwoI»,"“‘ i ‘%m
iy A ,?IT‘?““”‘:‘“*;“‘“ e, o ,mi""
s e B ol ey
g o P : G
g it ‘!{&x'mw,m, o (i g e
e i o
P el e, it
gl e
iyt i
e
i

iy
4. m, i
‘, wce, &;« -

“
S«m:i
e
M
e
: “x;‘M:‘HMhmwix
Ty
i,
i
s

L utg‘ . ‘,ya,, s;wm«m»;;;il&;r»
B b m gkt & whh!xmx o
g i G 0, “””"”‘““ e
Bt et Sy S g
e Bt g Lm‘ By \“"! i ,,,mmc & 2 e
b S e ol i
e Ve i o """"""‘"""“”“""‘"‘”z“ e
R i, Gl «mmu;« N ity U i i R i i
N ssxmm, g mmw* o i Nmm g e L : R “ MLMHM
i A i ““‘x‘"’gfi”“‘*fff@“‘” e T:
“::wzz;“‘l,f“”"‘:? s e S e m,miwi?,izv;,
iy w,*,xkisc g i wmmw\i‘x ‘*”"”“’“‘“’**‘f“m»w«m s “WMM i
i e S i i e
et ot T i b i
g it it Mg M W“r«i»x»‘hww!‘.sxxx‘ o o o . ‘“““"
g e b ‘M‘"MW. i S i 5 o - : \‘
iy it iy e L & wwcxxwm»éwxw i e m ‘!% ﬁ N
M,Zaxmgﬁ‘swm,m';sgmcswt L s “"7:‘*?4“‘:’3?? y,; . i
g i g w«i,g,,,,mw o M i s g i i % “7 =
u«uszmsum«u« i S i oy ““‘“"“”‘"”“ i Vi X\(‘
;w’w&(ﬁu“wimm,mi‘ P b KZMM e e i o ’m:’fm“ W‘
PR S
"y i Wby, Ry iy '“” »
i et g, ‘
Figy ity i, mmsm i s
L

g “w xxum‘ i
i vS -

il oy
;:tfr% = xg»‘%«.ﬁé e
i
ey e
e i ;{;n ttﬁv;ﬁfum,m, e
yv i >nm !«w) K i i i
. «L,zmx,; ,wm,p B
: mw i e o v
i i e i
& 'ﬂ“ i;;x iy D «_*»(s»; o e gy
»wmm e i Sl o g
e Ly S
it S

i o

B "

i
i
) x ‘ mm»m“ o
i mé‘ ’“

mcxm W‘

il

i
S
et

¢

i

P i ’»m MN(S‘M(A

o e

D
PR
. WK‘«:&'{M’,(o
e e il
s m,rm,,,, i i i R
S) i *“x«iu i S ‘-?’vg o .
e i M i e oty S
g My 50, i e ” e wuwm;w
i o ot g : X*xx!(»-«xx»q&xm,qq "
St ‘N‘ gy, *ﬁ b UWNW? w(;; ROESTIN gt “ MS 4;(5 ix‘!sx’mmnm‘m.‘ i i “
g G e i i i S
s e m,‘f‘: [y i ,w, i il b «,,gk,,,m;;(,*;;zmmm s i,
e s & e s s“xf;;w?,, Ve bl “e h‘xmmu
Ay g 3 \ff s xwww gt i ‘*«“’mun ST g *Nm
B 'w, iy, f(“M o Bk m‘«fix‘x,,”“ﬁ;““" w‘MMMMHU’ n,,,}**‘*- sl
ek g wwm, «w»m i s Ui i w m,,g,,,,
TN it mmxuw»m,m’ ,*"***"ﬂnm-“ .«,m,a,ﬁ*& iy s
Rt s ey ik ,,4, e m”s 50
o gt e e RS mh i i
b Lo B i ‘v**f««m.um, oy
s T (;;,,,-,s,» Ll Wm,,w, i 5 mu.,,, T
LT i il ,wmw«x i o e mw i
He i m»m Ko s n‘“’“‘ s Ui mm«» i
e o B "w o it [““‘MM e e «-wmy;,u ohe
,w Higy! Dl i i i m(i
hw;u g »*xc“s&s‘m,,w e 'hximm.p,,m
»»m:s iy i i umww g “N“}H’h i ey
i WW i ww i g S ol
M?wm R gy !
38) qfﬁ‘hgk’ i Wiy, ms,,‘j‘,j 3
i L i
i i
e

Wity

>$0 xu»(,x, s
43 l“ﬂ
:

i
s
N. M
s 7;
m’m ;«;s «' ’»u,;, ’MN“,::;,
E b g8 i ,’v=:;*t;ygs ‘sg_v:»»;mxg,w "‘,x,:ﬁ
e e g ‘,,;;;1;“wgs i QE i N
v e g 1 *'msmu’ i "W g v,
i v ok L i Wity smm Vil
¥ i iy g, :
S it g ww
A n"; i wxm;u i u.g, i
P

,»
ek R
i e :»yfﬁw«w e

i e DS

i

S b

i L

b w e g,

il ‘

il e

Advanced Programming 4-7

Incorrect Nesting

S St o
s o L e
g e i o
i S R TR i b g 1t
Pt ,.m, ST T e g i S
ot u«#_«m»mmw,,,,w,,,,L,M R T i Nt M e
Preni e s m e En e D ««www»w*vwwm“wmwwn« G R
4 i i e .m T nmwummwﬁ Kﬁx,mm i wmwmwms,“vnmuhvfuxr!mmxm o Ji et 4 p A ey ”W‘mx"} Sy i

i 1 A wxmw.ms; L E e e bt AT o e g D i

i e “w,,wu,««w,,;ny s v i m;q«mmmwmm w;,u!x,mﬁ«:xa ,f,?ff‘fﬁf:’;l"?f‘ '2:’ o T o

% 0 Sl e e e i wo i T e e L .mﬁ ¢ «-vf‘» ‘lm»ssww
R SIS E i s o L e
o = e s s e
g i e RN o ki e e o i SR
sl e O MEMM e S i ey ek et i R
Shele TR e sl B L i i oo e i B
B e A S St b e
il mgo-«mmmv«‘WW««;M“Urmnmn,NM“MN» wstﬁswm e i s s GEeE S e
i v 4«ﬁz»xxmswm;smmm;txsxmmmxmm b STRD A i b v s 4 bl o S “ b i
ff‘ff& §§1y§wm§m b e «3‘532&1 wmmmwwwwﬁxm;wiﬁim,wm»msm» ;"'xm*bwmm«sxmnxu»xmumun2%“;»)‘*;’9‘ i)“W;zy “;“;*g;*";;;;;j;;f':‘”"“““ i g OIS
i g m!l i s e R ﬁmm O ook gt Mmmm“mmmxx;msm i SR R SRS i R srari 0 ot
::,,g;;g::*,"s;z il ,,,gmw:: e e B e L0 ";z W,ii »i»ii m@%mw
B e e Qﬂlpwsx»ummuu e e i J;::;‘V;;;zx;z:“s:;m s i ««Mmcm;mmxﬁm::xm;;x::m:;;;m o s Wumm = i
(i SR b O S et o b)

s B B '&: EE Ll e B s e
o L S e oS I‘EEE’,mm??i ’i'lﬁfi.??““”“‘” e i’
ek, o e
b m;mas@mmm e f xx(m;::ﬁg;;;:x:?xxsﬁxfﬂm“
s s e e
bl ot L i

"
s
a2

P i T
e UL

i

i i

S
g e

A

A ot 0
S
i
o mmxiwns;wwm; . il
S A oy x*
i o i sgw
e xlﬂ“%&ws

s
b g,
S o ;smuwmsxm

mmldmw e

e ’\J L Msg‘ s
:

v s i iod

i
"

,m o
e

e

e

e mx.,m e
b

i

S,
b

i
i i
ey
? S;m i
5

mxmsw G %« s
e i ¥
‘ *f. i e
daglni o e PR SR L L
it e oN R ol <

i i et
A g

In the incorrect nesti
in [
o | g example, the | loop is activated first and then the J [[
oop is cancelled at the same time that R
loop”. When the | loop is completed and

is executed because it's an “inner

is finally accessed,

displayed. This is b
: ecause the J loo
loop. p was cancelled and was not reactivated after the last |

this—

e q;,/x;«;c i
e
S mwxmwswmul i S
Aol S e ey WEMM e S
b SR G e
e R i e o A e xm@l;mx i i
i LEARie el i e Lo
e i : ey i Six;xxmig
Fay i«awmm it o . S i s wxmm
SRS B ”,,mmm? s e
e s " o 7
o2 ""ﬁn’ ”:?s A . v ams;,,.“mwm! i “““"’2““2"”2?&““‘ n,«fﬁi:«)m
B EE e i e
i “mm ,g;‘;sd‘;; - i Axx e - ﬁfﬁw { kﬁrﬁ
i vxxxmx&NsxmmwSSQNI‘M»MN;M&U- B ““ ,gzzszxn”“ i e
&l s aFao {n o
e el -
e
m!m;;xgu ,g
Wil

" .
i h66&l(lxxxxnxxx»wm“w«“ﬁ sswxxxwwqms o o
e mm i T e e A
Mx’ siisite: b i i
o e i
bl =

-
wnm;« i
i) 81
e

T
il
i

s

il

e S

R o B

MW syttt &!uwx;;w;g;»mu‘ ;yx i p»;:;;:;»m
i oo

e it ttlxm‘tm(ﬁk;;;«(t!nxxx»t‘xxmﬂm;“"‘

A
i s el
S i oo

When the final val i
ue of | is reached, the ;
orinted.) last statement in the line is executed and

| sto IS p e ed e e ro ! | ' | VV' I ur ! e Is

(e]0] pletely exeCUtEd | a I (o] o] I | I stoe e

statements on separate lines.

4-8 Advanced Programming

Each

statement can have only one associated

statement. When a state-
ment is executed, and there is already an active loop using the same simple variable, then the
previous loop is cancelled and the new loop becomes active. In the following example, the
first I loop (in line 0) is activated and then cancelled when the second | loop is activated in line
2. When line 4 is executed, control returns to the latest | loop (in line 2).

i 2 i s e e . g i
k" ",ﬁ’“'wm 1 : i e it s

B i
S

A
0

i
S
i
i
M‘!"é e

B

The optional step size value enables you to specify a step size other than 1, the default step
size value. For example—

i F Y i i : G el TR
,M‘xx i O e i i
- e ,,(, .

i g gy ,, £ o

i fut e RS i s
% iy ER T b

. iy ey ‘~’

/ ,M» v i i e

£ * X . & %

i ,,;uf, §;¢w:,‘,’ " Qu;’xx e . A .: i

H 13 £ Bl

P

i “& Gt A
R Sk

f
'";«c« i

g

i

>

o
e

.
i

iy o B
Sag i M& i R]

o i

By adding the optional step size value to
incremented by that value each time the

statement, the simple variable will be
. statement is executed. In the previous exam-
ple, the loop is executed six times — when | = 0,10,20,30,40 and 50. As soon as the
incremented value is greater than the final value, the loop is exited.

For/next loops can be decremented by using negative values for the optional step size value.
For example-

gt N i Sl i o o st i i i
| " N A, g «x i i St i,
e g i o uy 4o ik gy g kww
RRR o S S el e e G T
v wiwgﬁ o ﬁ;t?‘«niﬁix;&m?rﬁ‘ il m“‘“ o lwmvx’z.l’ ‘ ‘x w«» s««i?‘r“ E iwin,(f‘i‘zzr gl IZI ‘“” “ﬁm; «xs’ms «fiu‘Q ifii e ué«"‘“"‘mv W'r’r,’ri’i‘ H’«« “ﬁ“
‘L I s T 3 g «‘« ot B gl “ B A A 1 B S g A, Y w “’“» b
f e ‘T,’,‘“ingkxwmmw “j u o ‘“‘”M«hx&msu, ‘ ,xxki . by s i vamuu s S e ol m,,.ww,m um,,wm »
R s i 1" S e e T e, TN “:Ixs:\‘““:kéq oy
i :i‘:f‘,z;‘ugn??ﬂsm‘““~*;zvf;;mr et ”‘“"’mnf!xf‘,Zf"'j*y%ffg&;'”“‘“m» et st (;z:;;;wnw«mzm e R Jiw»i%ﬁ;ii;j;a;»;sw
e Tl T e g L e g o T e
B .xmms««s&""" s i t‘}":’f‘&»wnm I i ,,Z’S: ”‘*mwm,mwi‘,,‘s " ‘“m;?«»mm‘m e “rz&; ;wr-m“;,“,,’* xxg&r,ssi‘-i’.““‘ o g
B ﬂw*wm&“ it x»nv»&«&.m]w“uh,‘ ‘smxw«ww,g e o xx{ . «w,m,,,,,‘ e g "Aj:i“ ":g"\i:u i
e e flo e S il o m,;(,;rw:vsm.
bt s L R i Sl "“‘“mw M“« iy g, o m”mh» S i S ikt r ’“““R ”“"” *m
e hzw R e B B B i *‘w M,,«“, - ’&- iy
e gt Ik A ! B it i b e it I it g T :m«‘ i m«
["; (eBimi, S s b i e b o an wm
o i St et el g 2 G LI
P o e e T i T e L iy

Sy g *‘iww{ s
o it i
S st ,».W b

B i Y

R
0 g e

. Mﬂx‘xssms«?u‘ g iy

o s g

p i - fi

i e Sl L il f’%ww,,m,, R e

o :x»»mg.«,,’ﬁx e §“f$f,’,;;~“’j‘«;3swm,,;Eu« g ‘,‘:‘ 22‘“@ e ,,“,“‘%»kw m:,(f

e D ey et s TR

i “*wi»Wm,‘,,,k,, x»’"mvmsmnwmimx ”fi““‘”*ww“ st bR
e g

oy o

g) s wtm ““‘“*qu“‘,

be an
The step size value does not have to

example—

Advanced Programming 4-9

wed. For
integer; fractional numbers are allo

Vv

example—

Once the

sy

e
s e y i iy
D — xmxxmmw i e
- mwwxxxm&xsnm,uw.,mm e «Sn o ,x&, i et
B e T L e gl e s
s o i i i
Axm“s;L i ey w i s i
A xxlk e s i e M, m;ﬁk .“ &me\xmm:w»smxmuum
;xsn;s;m;xw«m»ss i) e o Mﬂx?vx«wimlxmmwxxxx»hm 5
s : T At uw.mw i i
w&;;xmmxwissivxxw; st i) o i i
L e S “"‘“"‘"“
e T sl SR ey
) usg L e i 0 i - sm;
o ;&i&xw ’misim«m&xmmx e s w&mm
i) e e e
e sl W '!i{‘ m w g
“fi!’mmﬁ | i vmss;mxsmx
i ol xxmswsss;
b mm,xmxm
i .
:M;;;‘
b
i
W

g;

g
S g
i

hanged
ize values can be ¢

i ecuted, the initial, final and step size

statement is ex ,

i . in the following ex . _
mber of times the ioop is repeated 'r oses, but the loop itself is
g e be used within the loop for other purp
i d B can
variables A an

repeated only six times.

s
S

i

i
[
po

ool

xvxiwmmumm

s o

Tt
m mew« e

fo
& s

L
i

i
i

T
b

i

e

R

Mmm
sl

e .o
e

>
S
lxxxu&mmxwm

i

mmwmqwxxwm‘x'ﬂ e
el

WG

s

s
=d sy
g,

i i

i

ke S

e e

e i

e
b

s

-
o

uxﬁmmnxmx B

i x

o e

b
s

MM

e

P

N
i e

o
BRI
e i m«mbwwmm

.

axx@ i

ey g

;mwmm“
e

i i
i i s e i
e e i L U it (mm\i i
" " ws s mw&xxx»xxiiia-«gmqu i e
i s .
N) g S L O e ‘2
e i gl e i s
SR i o S il Wmi «sx.‘?!»“wi ey
i ;s;zgyn i o u4(«4ixxmmﬁ«xxxxwdm»m St ,,(,‘,,,,a,»mw [
0 ,f‘ 55x cx!: M;xm Bl o ung g e i, sl *:
e i i o e e e o xummxmiﬂu! Ao
i Mssugi‘ﬁ, . R con el i i msss,\;,,‘,wm e i e
- i i e e el e o iy
T e G Lo W “m,w e B 2 mmmmu o i ;;wxmwfu»c cﬁs??‘f“m
o ST e e - st i o
i s;,,pmxmmx;wmm s e Sl !-mvx»zzxwim« i e
e Mm\ssm A ol s o g
e e w,wm,,,mn it a T, ol i :
i e e G ey Al e
g i mmuwmssmxm i N oy s T) Wi
. ey it I T ot o s
,m b i il R iRl g(,mﬁ
i & S el L. mmmmi?iixvsx!i!&lwxwmm &
ww xmm A (i s ;,znuxnmm i
L 4mxxymm«m;w«x«mm» (,ummimx i
TR !mx memwui i e
am S SR
P

ViR mxm.w'
I

G

s

i

o

i i e sl
e o e
s [x,awﬁ“mum“nim

or ok e .xxxuxxxwhvﬂxxm««w&x«ms . et
i it PR) e 1

s e, it «x».mmmmm«v S g

oo [oo b [

;;Exm Sy el

g e en b

o w.ﬂwww i

WG
i,

R

e
e e ;
e

e

iy

At ,;vmu i
i 4“&.rdm,xxwtMw«&xm«

i
i

P

e i

(T

ot g
R e
e he s, ol
it

S By
S md-.::, Le
P - Bt T x
R e

g

mmww« i
i

mm«m

e

o Ry

e oy ,V«mwwmw

R i e e
i

S svinie o
e w HeY
e

it g o ;

.
o i,
 Wieni T

ot
e

o mwmmxm»»'mm xs

A st it et
wx mxmwxuu ki

.

b e

i T Mgﬁ" Hhi

AR RS «x%xxwmm?wxxm ﬂxxmw *
tthies ik, _ ”

it

i m ol l-m

p)
‘r;’ b ‘w “
5 4 i s «, w i L,w wL »M m; g
s 5 Wb smmmmm o il 0 T s
[e e . 5 ot o
2T i g . b xzn":ik‘m“,m,h "
P i iw*,mm«x(rm(x' i
r»«ﬂwcwmmmwn L
[

p i,
LT i,

P T
i

. ,u EARN
it 256

oo o

m.hmxu(b
i

i mimmm i
G L

s e
i U,mm i
R,
E

s i
i
P

s
f

et L

e

i

i

s, A g

S Y s gy

i o ol

i &«nm» i i o, A

0 o « w.«uuw»m i qu« i
T e

055 o e

i
o
i g e rwsmwn R ¥, iy g e
o m ;“ s ;a,xw »«uwwmmmmwm'* P I i 5 .
i L) i iels ape b o Rubimd
o f.x(R, o D e ’11«(; Uil “;m i
&gy . R t o
KRR LN vt s AU LR o x«ﬁ “',"-’ -
. s RS S o i, m»mm e 5
. i ¢ Yen i ;n#.i,.
N S o b 4 3 P
WG B g 1< hgh L
[y >xwmuv«) i v e «‘12’ ¥
T P E e A ;h
S R S L ikl »;, . x:"!' n,
g Hol :‘v f 5-‘* ¥
. P (..,5
e e e ~km,MWWW
B ¥ OBRRL . i, PR G i S ¥ »L
. T g g :

4-10 Advanced Programming

Subprograms

A subprogram is a programming routine that enables you to repeat an operaticn many times
substituting different values each time the subprogram is called. There are two types of
subprograms — subroutines* and functions.

Subroutines

A subroutine subprogram consists of one or more lines of programming which perform a
specific task. A subroutine is accessed using a call (::

i) statement followed by the name of

the subroutine, enclosed in single quotes (apostrophes). As many parameters as needed can
be used, within the limits of line length.

i1 ¥ name ' [iparameter 1[= parameterz:...] 1]

The first statement in the subprogram is its name, written as a label (enclosed in guotation
marks and followed by a colon). The last statement executed in a subprogram is always a
return (& %) statement.

Subroutine subprograms are similar to standard subroutines called by the gosub (# statement within a mainframe program. To
eliminate confusing the two, subroutine subprograms will be referred to as subroutine subprograms and standard subroutines will
be referred to as mainframe subroutines in this chapter.

Advanced Programming 4-11

Here's a program with a mainframe subroutine which prints the sum of two numbers—

"
-k
.

"
e
3 ;,“Q‘w o

.
i
.
il
i

g
4k
m

s
i
i

i
s mmx;n

e
e

A look at both programs shows that the subroutines are identical, but the calling statements
are different. A

statement, followed by the name of the subroutine enclosed in quotes, is
used to access the mainframe subroutine, while a statement, followed by the name of
the subprogram enclosed in apostrophes, is used to access the subroutine subprogram.

There's another difference between the two. The subroutine subprogram is executed im-
mediately, but execution of the mainframe subroutine is delayed until all other statements in
that line are executed, as shown by the following printouts.

Mainframe Subroutine Subroutine Subprogram

s

i i 5

With the mainframe subroutine, is printed before the routine is accessed and executed

and program control returns to the line following the one containing the

statement.

The subroutine subprogram is accessed and executed immediately so the sum is printed first.
Program control then returns to the statement following the call statement and
printed.

4-12 Advanced Programming

In addition to the immediate execute feature, the call statement can pass parameters to the
subroutine. In a subprogram, parameters are represented by p-numbers (parameter num-
bers). This enables you to call the subprogram repeatedly using different values for the
parameters each time. Here's an example of this based on the previous two programs—

——_—
e
Tt

Passing Parameters

Before covering functions, here’s some general information about parameters. A detailed
explanation of parameters (p-numbers) is found later.

Parameters that follow the call statement are always enclosed in parentheses and as many
parameters as the length of the line allows can be used. These parameters can be constants,
simple variables, expressions, r-variables or single elements of an array; entire arrays,
strings, string arrays and text cannot be used as parameters. In the preceding example, p1
and p2 in line 3 correspond to parameters A and B.

Parameters can be passed back from subroutines to main programs by assigning a value to a
p-number which corresponds to a variable. For example, lines 1 and 3 in the previous program
can be changed to—

Subprograms can be nested (called by another subprogram) as deeply as the calculator
memory allows. Each call statement requires a minimum of 26 bytes of memory when exe-
is executed. If parameters are passed, additional

cuted. That memory is returned when
memory is required.

Advanced Programming 4-13

Functions

A function subprogram consists of one or more lines of programming which perform a specific
task. A function is accessed using the name of the function enclosed in single quotes (apos-
trophes) within an expression or statement in the program. As many parameters as needed
can be used, within the limits of line length.

“name? [{parameter 1[: parameter 2:...]}]

. parameter

The first statement in the function itself is its name, written as a label (enclosed in quotation

marks and followed by a colon). The last statement executed in a function is always
followed by a return parameter. The return parameter, like a parameter that follows call state-
ments, can be a simple variable, a constant, an expression, an r-variable or an element of an
array. In addition, a return parameter can be an array, a string, a string array or text.

Here's an example of a function based on the previous programs—

e
i
0

s oy
g i

When the program is run, the function is accessed as line 1 is executed. The result of the
function is automatically returned and substituted for the name of the function in the statement

). This causes the value of A + B to be printed.

Like a subroutine, a function is executed immediately and program control returns to the

function (). A function subprogram can be used in a program wherever an expres-

sion can be used.

4-14 Advanced Programming

A parameter which follows a function call can be a simple variable, a constant, an r-variable,
an expression or a single element of an array. (Entire arrays, strings, string arrays and text
can't be parameters in a function call.) Parameters following a function call are always en-
closed in parentheses and as many parameters as the length of the line allows can be used.

Here's an example of a function that uses parameters—

If the return parameter is omitted from a function subprogram, :
parameter follows :

: results; if areturn
: in a subroutine subprogram or a mainframe subroutine, it's ignored
and no error is displayed.

Functions, like subroutines can be nested as deeply as the calculator memory allows. Each
function call requires a minimum of 26 bytes of memory when executed. That memory is
returned when % is executed. If parameters are passed, additional memory is required.

Advanced Programming 4-15

A function subprogram can be used within another subprogram or within an expression. When
the function call is placed in the expression, the value returned by the function is used directly
in the expression.

Here's an example of a function subprogram that computes the factorial of a number (lines 7
and 8) and uses it in the calculation in line 4 to find the number of combinations of N items
taken R at a time.

For 12 items taken 3 at a time the number of combinations is—

4-16 Advanced Programming

P-Numbers

A subprogram (subroutine or function) enables you to repeat an operation using different
values each time the subprogram is called. This is accomplished by following the subprogram
call with a list of parameters. When these parameters are passed to the subprogram, a
parameter number or p-number is assigned to each parameter in the list. The p-numbers are
assigned to the parameters consecutively, starting with p1. The subprogram operation is then
performed using the values passed by the subprogram call.

In addition to passed parameters, there are local p-numbers. When allocated, a local
p-number is initialized to zero. Local p-numbers are used in a subprogram as needed. Here's
an example that uses passed parameters and a local p-number.

e

T o wn PTY wvowe

PO)

When this program is run, p1 and p2 correspond to the passed parameters A and B, but p6 is
alocal p-number which, when allocated, is initialized to zero. When the subprogram operation
is performed using p1 and p2, the result of the function (" :::) is returned and printed.

P-numbers are assigned to parameters consecutively, starting with p1. if you use a local
p-number that doesn't follow the passed p-numbers in consecutive order, all p-numbers in
between are automatically allocated as local p-numbers. When allocated, these p-numbers
are initialized to zero. In the previous example, p3, p4 and p5 are initialized when p6 is
allocated and require memory space, even though they are not used.

PO is also a local p-number but it isn't initialized to zero. Instead, when the subprogram is
called, p0 is initialized to the number of parameters passed to the subprogram.

Subprograms can be nested (called by another subprogram) as deeply as the calculator
memory allows. In addition, a function subprogram can be used as the parameter for another
subprogram (function or subroutine) like this —

In the line above, A and B are parameters for the function * i * and the result of the

function is the parameter for the subroutine * =i

Advanced Programming

When subprograms having parameters are nested, each set of p-numbers is independent of
the p-numbers in the next subprogram or level, even though the same p-numbers may be
used in each. To illustrate independent p-numbers in nested subprograms, the following
example converts a Fahrenheit temperature to Celsius and then outputs both temperatures.
Notice that each subprogram uses p1 without affecting the value of the other.

When the trace mode is established (%

to monitor the activity of the running pro-
gram, value assignments for each p-number used are not printed as they are for each simple
variable. Instead, as in line 7 of the following traced printout, all p-numbers are referenced by
without indicating the specific p-number.

]

ne

1
i

4-17

4-18 Advanced Programming

If a p-number is used as a parameter in a nested subprogram call, there may be some
interaction between the p-numbers used in each subprogram. The following program uses
nested subprogram calls with parameters to illustrate what happens to p-numbers, variables,
expressions and constants in a parameter list when their values are changed in a subpro-
gram.

The main program (lines 0 through 2) contains the call for
5and 1xA, i (lines 3 through 6) calls
5 and 1xA. (lines 7 through 10) triples the value of each parameter and then prints
the values. Program control returns to line 4 (

i with three parameters — A,

which has five parameters — A, p1, p0,

i) and the current value of each parame-
ter is doubled and printed.

Advanced Programming 4-19

Here's a chart that shows the values of the parameters during program executlon The shaded
chart below duplicates the chart at the top and shows values before

Sub-1

Passed Initial | Corresponding
Parameters | Values p-numbers

A 2 p1
5 5 p2
1XA 2 p3
Sub-2
Passed Initial | Corresponding | Values after | Values after "Since A and p1 (in
Parameters | Values p-numbers line 8 line 9 Sub-1) and p1 and
p2.(in Sub-2) are all
A 2 p1 6 18% different names for
p1 2 p2 6% 18 the same value,
PO 3 p3 3 9 when p1 (in Sub-2)
5 5 p4 1 5 | 15 is tripled in line 8, A
1A 2 p5 2 6 and p1 (in Sub-1)
and p2 (in Sub-2)
are also tripled.
The same is true in
line 9 when p2 is
tripled.
Sub-1 (Results before calling Sub-2) Results after return from Sub-2

Values after Values after | Values after

Sub-2 execution line 4 line 5
18 36 36
5 5 10

2 2 4

4-20 Advanced Programming

When program control returns to the main program, the final value of A is printed.

Although p-numbers can be used only within subprograms, they can be accessed in the live
keyboard mode or by stopping execution during a subprogram. A stop statement can be used
in a subprogram to stop execution of the subprogram. The current value of any of the
p-numbers in the subprogram can be displayed or changed, but new p-numbers can't be
created.

Split and Integer Precision Storage

With the AP and String Variables ROM installed in your HP 9825, you can compactly store
values in split and integer precision formats using string variables. In stored form, the values
cannot be used directly in calculations, although they can easily be converted back to
numeric values for that purpose. This enables you to store large amounts of data using half

(split precision) or one fourth (integer precision) as much memory as full precision storage
reqguires.

Split Precision Storage

Using split precision format, full precision numbers (twelve digit mantissa with sign and expo-
nent) are rounded to six digits and stored in string variables. Only values with exponents in the
range of =63 can be stored using split precision format.

The full to split (¥ % =) function stores a value in split precision format by encoding the value
into four characters* (or bytes) which can then be stored in a previously dimensioned string
variable. The location within the string variable (first and last characters) where the encoded
value is to be stored should always be specified to eliminate truncation of the rest of the string.
The value to be stored must be enclosed in parentheses.

£ n s fexpression

*The first character contains the exponent and sign. Each of the three remaining characters contain two BCD (Binary Coded
Decimal) digits.

Advanced Programming 4-21

To unpack the value, the split to full (=

") function is used. The string variable must also be
enclosed in parentheses.

{string variable :

Here's a program that uses the ¢ % = function to store a list of ten random numbers. (The
function in line 4 generates the random numbers.) The numbers are packed into a string array
consisting of ten strings, each four characters long.*

.";

TR T

The rest of the program unpacks the stored values using the

“ function and then prints the
numbers. The values being recovered are six digit numbers because they were rounded
before they were stored using the +

. = function.

Now press Q to start the program and compare these printouts with yours. (Press

before running any of the example programs in this chapter to get printouts identical to those
shown.)

Ll L

SR At

o
N

Py

v
Xl

*Normally the first and last characters of the string variable being used for storage (i.e., A$[l,1,4]) must be specified, otherwise the
remainder of the string may be truncated after the last character stored. However, in this program it's not needed, since each string
is only four characters long.

4-22 Advanced Programming

All values are rounded to six digits before they are stored. If you attempt to store a number with
an exponent outside the range of —63 to +63 (and flag 14 is clear), = i
and flag 15 is set (to 1)*. To avoid this error, you can set flag 14 before the

is displayed
i = function is
executed. This causes a default value to be substituted and stored. If the exponent is less than
—63, the underflow default value is 0; if the exponent is greater than +63, the overflow default
value is £9.99999e63. Flag 15 is set regardless of whether flag 14 is set or not.

To illustrate what happens when the exponent is less than —63 (underflow), execute these
statements—

And the display shows—

[@y B \j

Then set flag 14, and the underflow value is automatically substituted. Key in and execute
these statements—

Which substitutes, stores and displays—

To illustrate what happens when the exponent is greater than +63 (overflow), execute the
following statements—

And the display shows—

*Remember that flag 15 is set when any math error occurs.

Advanced Programming 4-23

By setting flag 14 first, the overflow default value is substituted. Key in and execute these
statements—

Which substitutes, stores and displays—

)

The next example uses split precision format to store four full precision numbers in each
simple string in a string array. As many numbers as the size of the memory and the size of the
string array allow, can be stored in split precision format. This means that you can use a string

array just like a chart or a table to store data (part numbers, temperatures, eic.) for easy
reference. This program also uses the &
stored.

: function in line 4, to generate the values to be

Notice that in line 5 three expressions are used to position the value in the appropriate string —
the string used for storage (1), the beginning character of the string where the value is to be
stored (4(J-1)+1) and the end character where the value is to be stored 4J).

To recall the numbers from split precision format, add these lines to the program and run it.

4-24 Advanced Programming

And the printout looks like this—

“i‘\! "’,‘,‘ '~‘L;}*H

uuxim o
R
il
o

; \iﬁi";";&a@m

r,-:s»m« o &,»,;ﬂﬁxc

5 g

i

wem.«,«

e o

g

ek W*‘rww-:t;.r,,.n
g

A oy

g ’,,me]

e g
LT E';
‘?.l w’ v«"...' el
L5

e
i ‘Mn'e ook
m»ﬂ:;l,, S

ey

JE T T

it)'

L ;ttﬁ“f“‘*'
i

g8 gz e
[N N
oy L e

Vi T S T c.,'»«m, % .
T ,,M,,A,%{, 5,,) e ;
Pt s 2

‘,3 b I v
g b ol

vLatiian, 1
i

e,
i «,,,

"xx‘f’?xw T

A

- ww‘m »;sw;u“w i

e

i .
i et
il

ey):«,,.,“
a
o

\=u»g§

~ SRR R B
e i B
s . . :
g«;~.~’i (

S
. >an,

i

B o w...ix«

3

iy
Tt
e

S
.
. n’ i

LTORLS :4;”:';& e

3 '*a

frgh el

fﬁﬂi?ru_w 5 mx. ,* 5
e oo Tﬁ,,m-d,,« o

o sl

S ;:: e =».@m
: p £ o
R e

g
'Smm

i
ii“ﬁlz“ﬁx.‘

i

x“w»(;rm ik

st :
i o x‘
et

[=
-

i
e v

o
% ooy
s e

i
o

o

s

S

i
Az n,,, W“,,M,w

‘“&

ox =

il g p e
e A iri;r';‘% s %'5"3‘5 b
ER'R o *‘fﬂ‘ e m—“ Sl TR

o

T T E ‘..,ma, . ;g-w,

ity

i ; T
g j;m S g s il b W
e B b e e o
LR LA R 5 e

.ﬁ‘[o u”xg g§;;~~ vw‘w‘- ey E
T ?

GTaTes

Some applications require that data be stored in a linear array. By storing data in a single
string instead of string arrays, numbers can be stored even more compactly by saving the
bytes of memory that would have been allocated for the setting up (overhead) of a string array.

The following example stores numbers in a simple string using the

the values to be stored.

LS
ki e
PR JURPe

1 ik i
5o bt Tl S SN
1 g T ;"‘* SRR

: e s

e Gy »kvv««.fl - - R .

Gaton Fotaod S, L R TR SR Lo * i d e,
I S L S SR

! H ; o
B et - A e v

.

function to generate

Advanced Programming 4-25

To recover the numbers, add these lines and run the program.

To get these printouts—

4-26

Advanced Programming

Integer Precision Storage

Using integer precision format, numbers in the range —32768 to +32767 can be stored as
integers in string variables even more compactly than split precision format.

The full to integer (+ % i) function rounds a value to an integer and stores it in integer precision
format by encoding the value into two characters (or bytes) which can then be stored in a
previously dimensioned string variable. The location within the string variable (first and last
characters) where the encoded value is to be stored should always be specified to eliminate

truncation of the rest of the string. The value to be stored must be enclosed in parentheses.

{expression !

To recover or unpack the value, the integer to full (i %) function is used. The string variable

must also be enclosed in parentheses.

istring variable !

The following program uses the i function to store a list of ten random numbers. (The
ffunction in line 4 generates the random numbers.) The numbers are packed into a string

array consisting of ten strings, each two characters long.”

The rest of the program unpacks the stored values using the function and then prints the
numbers. The values being recovered are integers within the range previously stated because

they were rounded before they were stored.

*Normally the first and last characters of the string variable being used for storage (i.e., A$[l.1,2]) must be specified, otherwise the
remainder of the string may be truncated after the last character stored. However, in the following program it's not needed since
each string is only two characters iong.

Advanced Programming

Now press S to start the program and compare the listings.

If you attempt to store a number outside the range —32768 to +32767 using integer precisicn
format (and flag 14 is clear) = s displayed and flag 15 is set.*

To avoid = , you can set flag 14 before the # % i function is executed. This causes
an overflow default value (—32768 or +32767) to be substituted. Flag 15 is set regardless of

whether flag 14 is set or not.

To illustrate overflow, execute these statements—

And the display shows—

1

By setting flag 14 first, the overflow default value is substituted without displaying an error.

Key in and execute these statements—

And the default value is automatically substituted, stored and displayed—-

C)

*Remember that flag 15 is set when any math error occurs.

4-27

4-28 Advanced Programming

If the value to be packed is between —.5 and .5, then it is rounded to zero as shown here—

)]

Here’s an example that uses integer precision format to store eight values in each simple
string of a string array. As many numbers as the size of the memory and the size of the string
array allow, can be stored in integer precision format. This means that you can use a string
array to store data in a table or chart for easy reference. This program also uses the i

function to generate the values to be stored.

Notice that in line 5, three expressions are used to position the value in the appropriate string -
the string being used for storage (1), the beginning character where the value is to be stored
(2(J-1)+1) and the last character where the value is to be stored (2J).

To recall the numbers from integer precision format, add these lines to the program and run it.

Advanced Programming 4-29

And the printout looks like this—

Some applications require data storage in a string or linear array. By storing data in a singie
string instead of string arrays, numbers can be stored even more compactly by saving the
memory that would have been allocated for the setting up (overhead) of a string array.

The following example stores numbers in a single string using the ‘ function to generate

the values to be stored.

To recover the numbers, add these

-w,"

L

TR ET

i 2]

e gt

4-30

Advanced Programming

And the printout shows—

Summary

Full precision numbers (twelve digit mantissa plus exponent and sign) can be compactly
stored in strings or in string arrays using one of two possible storage formats. Split precision
format packs data in half the memory space that full precision storage requires and integer
precision format packs data in one fourth the memory space that full precision storage re-

quires.

Storing a number using full precision format requires eight bytes of memory. Using split
precision format, only four bytes of memory are required to store a number. This is ac-
complished by limiting the range and precision of the numbers that can be stored. Using split
precision format, the number is rounded to six digits before storage. In addition, the exponent
must be in the range —63 to +63. If it's not in that range, then flag 15 is set (to 1) and
is displayed (if is clear). To avoid you can set flag 14 before
executing the function, causing a default value to be substituted and stored. For an
overflow error, the default value is £9.99999e63; if it's an underflow error the default value is 0.

Advanced Programming

The following program illustrates how the

function internally rounds the value to be
packed to six digits before storage in split precision format.

TEE
i oo e
A
i ,,a,;%,; Justiatn i
"

ik
% e)
S

= :

st e iy
it R ey mw_s
s e

i
i
i

e
At s
ot fee
TR oo
i
e

Using integer precision format, only two bytes of memory are required to store a number.
Integers in the range —32768 to +32767 can be stored using integer precision format. If you
attempt to store a number that’s outside of this range using integer precision format, flag 15 is
set and is displayed (if ¢ : is clear). To avoid you can set

flag 14 before executing the + % i function, causing an overflow default value (—32768 or
+32767) to be substituted and stored. If the value to be packed is between —.5 and .5, then it

is rou